A Decision-Making Method Providing Sustainability to FPGA-Based SoCs by Run-Time Structural Adaptation to Mode of Operation, Power Budget, and Die Temperature Variations
Author(s) -
Dimple Sharma,
Lev Kirischian
Publication year - 2021
Publication title -
international journal of reconfigurable computing
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.236
H-Index - 16
eISSN - 1687-7209
pISSN - 1687-7195
DOI - 10.1155/2021/5512938
Subject(s) - computer science , field programmable gate array , adaptation (eye) , embedded system , power (physics) , task (project management) , robotics , embedded operating system , set (abstract data type) , resource (disambiguation) , robot , operating system , artificial intelligence , systems engineering , programming language , physics , software , quantum mechanics , optics , engineering , computer network
One of the growing areas of application of embedded systems in robotics, aerospace, military, etc. is autonomous mobile systems. Usually, such embedded systems have multitask multimodal workloads. These systems must sustain the required performance of their dynamic workloads in presence of varying power budget due to rechargeable power sources, varying die temperature due to varying workloads and/or external temperature, and varying hardware resources due to occurrence of hardware faults. This paper proposes a run-time decision-making method, called Decision Space Explorer, for FPGA-based Systems-on-Chip (SoCs) to support changing workload requirements while simultaneously mitigating unpredictable variations in power budget, die temperature, and hardware resource constraints. It is based on the concept of Run-Time Structural Adaptation (RTSA); whenever there is a change in a system’s set of constraints, Explorer selects a suitable hardware processing circuit for each active task at an appropriate operating frequency such that all the constraints are satisfied. Explorer has been experimentally deployed on the ARM Cortex-A9 core of Xilinx Zynq XC7Z020 SoC. Its worst-case decision-making time for different scenarios ranges from tens to hundreds of microseconds. Explorer is thus suitable for enabling RTSA in systems where specifications of multiple objectives must be maintained simultaneously, making them self-sustainable.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom