
Application of Ground Penetrating Radar in Detecting Deeply Embedded Reinforcing Bars in Pile Foundation
Author(s) -
Daochuan Zhou,
Haibin Zhu
Publication year - 2021
Publication title -
advances in civil engineering
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.379
H-Index - 25
eISSN - 1687-8094
pISSN - 1687-8086
DOI - 10.1155/2021/4813415
Subject(s) - ground penetrating radar , pile , radar , foundation (evidence) , engineering , antenna (radio) , nondestructive testing , hyperbola , geotechnical engineering , acoustics , computer science , geology , structural engineering , telecommunications , medicine , physics , geometry , mathematics , archaeology , radiology , history
Ground penetrating radar (GPR) has been widely used for nondestructive testings in civil engineering. However, the GPR has not been adequately applied in detecting deeply embedded reinforcing bars, which is usually difficult to be revealed in radar image due to the wave interference and attenuation in large depth penetration. This study presents a new approach for the GPR detection of deeply embedded reinforcing bars in the reinforced concrete pile foundation. The aim of the GPR survey is to determine the existence and the depth of internal reinforcing bars in the pile foundation for solving engineering dispute. Low centre frequency antenna was used in GPR field testing to obtain the reflected raw data. Optimized procedures of digital filtering techniques were applied to process the GPR raw data. The deeply embedded reinforcing bars are revealed in the radar image after the field testing and postprocessing procedures. The depth of the reinforcing bars was estimated based on the hyperbola match method. The GPR test results were validated by the excavation of the pile foundation. The low centre frequency antenna has been found to be essential to obtain the reflected wave signals of deeply embedded reinforcing bars. The optimized processing procedures is useful to identify and display the reinforcing bars in radar image. The combination of low centre frequency antenna and the postprocessing procedures make the detection of deeply embedded reinforcing bars feasible. The proposed GPR testing method has been found to be effective to estimate the depth of deeply embedded reinforcing bars, which provides the key information for solving engineering dispute.