Aircraft Detection for Remote Sensing Images Based on Deep Convolutional Neural Networks
Author(s) -
Liming Zhou,
Haoxin Yan,
Yingzi Shan,
Zheng Chang,
Yang Liu,
Xianyu Zuo,
Baojun Qiao
Publication year - 2021
Publication title -
journal of electrical and computer engineering
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.318
H-Index - 25
eISSN - 2090-0155
pISSN - 2090-0147
DOI - 10.1155/2021/4685644
Subject(s) - computer science , convolutional neural network , artificial intelligence , field (mathematics) , image (mathematics) , scale (ratio) , deep learning , noise (video) , object detection , computer vision , remote sensing , pattern recognition (psychology) , physics , mathematics , quantum mechanics , pure mathematics , geology
Aircraft detection for remote sensing images, as one of the fields of computer vision, is one of the significant tasks of image processing based on deep learning. Recently, many high-performance algorithms for aircraft detection have been developed and applied in different scenarios. However, the proposed algorithms still have a series of problems; for instance, the algorithms will miss some small-scale aircrafts when applied to the remote sensing image. There are two main reasons for the problem; one reason is that the aircrafts in the remote sensing image are usually small in size, leading to detecting difficulty. The other reason is that the background of the remote sensing image is usually complex, so the algorithms applied to the scenario are easy to be affected by the background. To address the problem of small size, this paper proposes the Multiscale Detection Network (MSDN) which introduces a multiscale detection architecture to detect small-scale aircrafts. With the intention to resist the background noise, this paper proposes the Deeper and Wider Module (DAWM) which increases the perceptual field of the network to alleviate the affection. Besides, to address the two problems simultaneously, this paper introduces the DAWM into the MSDN and names the novel network structure as Multiscale Refined Detection Network (MSRDN). The experimental results show that the MSRDN method has detected the small-scale aircrafts that other algorithms missed and the performance indicators have higher performance than other algorithms.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom