z-logo
open-access-imgOpen Access
On the Low-Degree Solution of the Sylvester Matrix Polynomial Equation
Author(s) -
Yunbo Tian,
Chao Xia
Publication year - 2021
Publication title -
journal of mathematics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.252
H-Index - 13
eISSN - 2314-4785
pISSN - 2314-4629
DOI - 10.1155/2021/4612177
Subject(s) - mathematics , degree (music) , combinatorics , physics , acoustics
We study the low-degree solution of the Sylvester matrix equation A 1 λ + A 0 X λ + Y λ B 1 λ + B 0 = C 0 , where A 1 λ + A 0 and B 1 λ + B 0 are regular. Using the substitution of parameter variables λ , we assume that the matrices A 0 and B 0 are invertible. Thus, we prove that if the equation is solvable, then it has a low-degree solution L λ , M λ , satisfying the degree conditions δ L λ < Ind A 0 − 1 A 1  and  δ M λ < Ind B 1 B 0 − 1 .

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom