Classification of Rings with Toroidal and Projective Coannihilator Graph
Author(s) -
Abdulaziz M. Alanazi,
Mohd Nazim,
Nadeem ur Rehman
Publication year - 2021
Publication title -
journal of mathematics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.252
H-Index - 13
eISSN - 2314-4785
pISSN - 2314-4629
DOI - 10.1155/2021/4384683
Subject(s) - mathematics , combinatorics , graph
Let S be a commutative ring with unity, and a set of nonunit elements is denoted by W S . The coannihilator graph of S , denoted by A G ′ S , is an undirected graph with vertex set W S ∗ (set of all nonzero nonunit elements of S ), and α ∼ β is an edge of A G ′ S ⇔ α ∉ α β S or β ∉ α β S , where δ S denotes the principal ideal generated by δ ∈ S . In this study, we first classify finite ring S , for which A G ′ S is isomorphic to some well-known graph. Then, we characterized the finite ring S , for which A G ′ S is toroidal or projective.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom