PF : Website Fingerprinting Attack Using Probabilistic Topic Model
Author(s) -
Hongcheng Zou,
Ziling Wei,
Jinshu Su,
Baokang Zhao,
Yusheng Xia,
Na Zhao
Publication year - 2021
Publication title -
security and communication networks
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.446
H-Index - 43
eISSN - 1939-0114
pISSN - 1939-0122
DOI - 10.1155/2021/3265300
Subject(s) - computer science , probabilistic logic , naive bayes classifier , false positive rate , attack model , feature (linguistics) , bayes' theorem , computer security , machine learning , artificial intelligence , data mining , bayesian probability , support vector machine , linguistics , philosophy
Website fingerprinting (WFP) attack enables identifying the websites a user is browsing even under the protection of privacy-enhancing technologies (PETs). Previous studies demonstrate that most machine-learning attacks need multiple types of features as input, thus inducing tremendous feature engineering work. However, we show the other alternative. That is, we present Probabilistic Fingerprinting (PF), a new website fingerprinting attack that merely leverages one type of features. They are produced by using a mathematical model PWFP that combines a probabilistic topic model with WFP for the first time, due to a finding that a plain text and the sequence file generated from a traffic instance are essentially the same. Experimental results show that the proposed new features are more distinguishing than the existing features. In a closed-world setting, PF attains a better accuracy performance (99.79% at most) than prior attacks on various datasets gathered in the scenarios of Shadowsocks, SSH, and TLS, respectively. Besides, even when the number of training instances drops to as few as 4, PF still reaches an accuracy of above 90%. In the more realistic open-world setting, PF attains a high true positive rate (TPR) and Bayes detection rate (BDR), and a low false positive rate (FPR) in all evaluations, which outperforms the other attacks. These results highlight that it is meaningful and possible to explore new features to improve the accuracy of WFP attacks.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom