z-logo
open-access-imgOpen Access
New Betweenness Centrality Node Attack Strategies for Real‐World Complex Weighted Networks
Author(s) -
Quang Nguyen,
Ngoc-Kim-Khanh Nguyen,
Davide Cassi,
Michele Bellingeri
Publication year - 2021
Publication title -
complexity
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.447
H-Index - 61
eISSN - 1099-0526
pISSN - 1076-2787
DOI - 10.1155/2021/1677445
Subject(s) - betweenness centrality , centrality , node (physics) , computer science , complex network , computer security , mathematics , combinatorics , world wide web , engineering , structural engineering
In this work, we introduce a new node attack strategy removing nodes with the highest conditional weighted betweenness centrality (CondWBet), which combines the weighted structure of the network and the node’s conditional betweenness. We compare its efficacy with well-known attack strategies from literature over five real-world complex weighted networks. We use the network weighted efficiency (WEFF) like a measure encompassing the weighted structure of the network, in addition to the commonly used binary-topological measure, i.e., the largest connected cluster (LCC). We find that if the measure is WEFF, the CondWBet strategy is the best to decrease WEFF in 3 out of 5 cases. Further, CondWBet is the most effective strategy to reduce WEFF at the beginning of the removal process, whereas the Strength that removes nodes with the highest sum of the link weights first shows the highest efficacy in the final phase of the removal process when the network is broken into many small clusters. These last outcomes would suggest that a better attacking in weighted networks strategy could be a combination of the CondWBet and Strength strategies.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom