
A Continuous-Discrete Finite Memory Observer Design for a Class of Nonlinear Systems: Application to Fault Diagnosis
Author(s) -
Tingting Zhang,
Frédéric Kratz,
Yunhui Hou,
Vincent Idasiak
Publication year - 2020
Publication title -
mathematical problems in engineering
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.262
H-Index - 62
eISSN - 1026-7077
pISSN - 1024-123X
DOI - 10.1155/2020/7312521
Subject(s) - nonlinear system , control theory (sociology) , lipschitz continuity , robustness (evolution) , mathematics , observer (physics) , computer science , ode , mathematical optimization , mathematical analysis , biochemistry , chemistry , physics , control (management) , quantum mechanics , artificial intelligence , gene
This paper aims to develop a continuous-discrete finite memory observer (CD-FMO) for a class of nonlinear dynamical systems modeled by ordinary differential equations (ODEs) with discrete measurements. The nonlinear systems under consideration are at least locally Lipschitz, which guarantees the existence and uniqueness of solution at each time instant. The proposed nonlinear observer uses a finite number of collected measurements to estimate the system state in the presence of measurement noise. Besides, a one-step prediction algorithm incorporated with an iterative-update scheme is performed to solve the integral problem caused by system nonlinearity, and an analysis of the numerical integration approximation error is given. The properties of estimation performance have been further proved in deterministic case and been analyzed by Monte Carlo simulation in stochastic cases. It is worth noting that the presented method has a finite-time convergence, while most nonlinear observers are usually asymptotically convergent. Another advantage of CD-FMO is that it has no initial value problem. For the application purpose, residuals are generated to implement fault detection cooperated with Cumulative Sum (CUSUM) control charts, while a bank of CD-FMOs is adopted to realize fault isolation for different sensor and actuator faults of the considered nonlinear robotic arm. The robustness and effectiveness of the proposed approach are illustrated via the simulation results.