z-logo
open-access-imgOpen Access
3,5-Dicaffeoyl-Epi-Quinic Acid Isolated from Edible Halophyte Atriplex gmelinii Inhibits Adipogenesis via AMPK/MAPK Pathway in 3T3-L1 Adipocytes
Author(s) -
Jung Hwan Oh,
Jung Im Lee,
Fatih Karadeniz,
Youngwan Seo,
ChangSuk Kong
Publication year - 2018
Publication title -
evidence-based complementary and alternative medicine
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.552
H-Index - 90
eISSN - 1741-4288
pISSN - 1741-427X
DOI - 10.1155/2018/8572571
Subject(s) - adipogenesis , ampk , 3t3 l1 , halophyte , protein kinase a , mapk/erk pathway , chemistry , quinic acid , downregulation and upregulation , medicine , endocrinology , kinase , biochemistry , biology , adipose tissue , ecology , salinity , gene
Atriplex gmelinii is an edible halophyte that has been suggested to possess various health benefits. In the present study, 3,5-dicaffeoyl-epi-quinic acid (DEQA) isolated from A. gmelinii was tested for its ability to prevent adipogenesis in 3T3-L1 cells. Also, the molecular mechanisms by which DEQA affects differentiation of 3T3-L1 cells were investigated. The introduction of DEQA to differentiating 3T3-L1 preadipocytes resulted in suppressed adipogenesis and lowered expression of adipogenesis-related factors, PPAR γ , C/EBP α , and SREBP-1c. Treatment of 3T3-L1 adipocytes with DEQA notably decreased the levels of phosphorylated p38, ERK, and JNK. In addition, presence of DEQA upregulated the levels of both inactive and phosphorylated adenosine monophosphate-activated protein kinase (AMPK) and its substrate, acetyl-CoA carboxylase (ACC). Taken together, current results indicated that DEQA exhibited a significant antiadipogenesis activity by activation of AMPK and downregulation of MAPK signal pathways in 3T3-L1 preadipocytes.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here