z-logo
open-access-imgOpen Access
Finite Element Based Viscous Numerical Wave Flume
Author(s) -
Min Qin,
Bing Chen,
Lin Lü
Publication year - 2013
Publication title -
advances in mechanical engineering
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.318
H-Index - 40
eISSN - 1687-8140
pISSN - 1687-8132
DOI - 10.1155/2013/308436
Subject(s) - mechanics , wave flume , free surface , slosh dynamics , boundary element method , flume , breaking wave , volume of fluid method , stokes wave , finite element method , physics , geology , wave propagation , flow (mathematics) , optics , thermodynamics
A two-dimensional numerical wave flume (NWF) for viscous fluid flows with free surface is developed in this work. It is based on the upwind finite element solutions of Navier-Stokes equations, CLEAR-volume of fluid method for free surface capture, internal wave maker for wave generation, and sponge layer for wave absorbing. The wave generation and absorption by prescribing velocity boundary conditions along inlet and radiation boundary condition along outlet are also incorporated. The numerical model is validated against several benchmarks, including dam-breaking flow, liquid sloshing in baffled tank, linear water wave propagation and reflection from vertical wall, nonlinear solitary wave fission over sharp step, and wave-induced fluid resonance in narrow gap confined by floating structures. The comparisons with available experimental data, numerical results, and theoretical solutions confirm that the present numerical wave flume has good performance in dealing with complex interface flows and water wave interaction with structures

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom