Comparative Modal Analysis of Gasketed and Nongasketed Bolted Flanged Pipe Joints: FEA Approach
Author(s) -
Мuhammad Abid,
Shahid Maqsood,
Hafiz Abdul Wajid
Publication year - 2012
Publication title -
advances in mechanical engineering
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.318
H-Index - 40
eISSN - 1687-8140
pISSN - 1687-8132
DOI - 10.1155/2012/413583
Subject(s) - flange , gasket , structural engineering , bolted joint , piping , finite element method , engineering , joint (building) , modal , modal analysis , vibration , failure mode and effects analysis , lap joint , mechanical engineering , materials science , composite material , physics , quantum mechanics
It is widely known that resonance can quickly lead to failure in vibrating bolted flanged pipe joints. Condition monitoring is performed time to time in some industries for smooth operation of a system, whereas mostly trial-and-error tests are performed to control vibration. During all this process, the inherent design problems are not considered. A bolted flange joint in piping system is not a simple problem, being the combination of flange, gasket, bolts, and washers. The success of a bolted flanged pipe joint is defined by the “static mode of load” in the joint. However, it has been recognized that a “dynamic mode of load” governs in a gasketed bolted flanged pipe joint, which leads to its failure due to flange rotation, providing flange yielding, fatigue of bolts, and gasket crushing. This paper presents results of detailed 3D finite element and mathematical modal analysis under bolt up to determine natural frequencies and mode shapes of gasketed flanged joints with and without raised face in comparison to the nongasketed flange joint
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom