z-logo
open-access-imgOpen Access
Potential Biomarkers of Colorectal Adenoma–Dysplasia–Carcinoma Progression: mRNA Expression Profiling and In Situ Protein Detection on TMAs Reveal 15 Sequentially Upregulated and 2 Downregulated Genes
Author(s) -
Orsolya Galamb,
Ferenc Sípos,
Sándor Spisák,
B Galamb,
Tibor Krenács,
Gábor Valcz,
Zsolt Tulassay,
Béla Péter Molnár
Publication year - 2009
Publication title -
analytical cellular pathology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.576
H-Index - 24
eISSN - 2210-7185
pISSN - 2210-7177
DOI - 10.1155/2009/890349
Subject(s) - osteonectin , colorectal adenoma , osteopontin , cancer research , tumor progression , adenoma , carcinogenesis , pathology , biology , gene expression , medicine , colorectal cancer , gene , cancer , endocrinology , biochemistry , alkaline phosphatase , osteocalcin , enzyme
Background : As most colorectal cancers (CRC) develop from villous adenomas, studying alterations in gene expression profiles across the colorectal adenoma–dysplasia–carcinoma sequence may yield potential biomarkers of disease progression. Methods : Total RNA was extracted, amplified, and biotinylated from colonic biopsies of 15 patients with CRC, 15 with villous adenoma and 8 normal controls. Gene expression profiles were evaluated using HGU133Plus2.0 microarrays and disease progression associated data were validated with RT-PCR. The potential biomarkers were also tested at the protein level using tissue microarray samples of 103 independent and 16 overlapping patients. Results : 17 genes were validated to show sequentially altered expression at mRNA level through the normal–adenoma–dysplasia–carcinoma progression. Prostaglandin-D2 receptor (PTGDR) and amnionless homolog (AMN) genes revealed gradually decreasing expression while the rest of 15 genes including osteonectin, osteopontin, collagen IV–alpha 1, biglycan, matrix GLAprotein, and von Willebrand factor demonstrated progressively increasing expression. Similar trends of expression were confirmed at protein level for PTGDR, AMN, osteopontin and osteonectin. Conclusion : Downregulated AMN and PTGDR and upregulated osteopontin and osteonectin were found as potential biomarkers of colorectal carcinogenesis and disease progression to be utilized for prospective biopsy screening both at mRNA and protein levels. Gene alterations identified here may also add to our understanding of CRC progression.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here