z-logo
open-access-imgOpen Access
Ligands of the Mitochondrial 18 kDa Translocator Protein Attenuate Apoptosis of Human Glioblastoma Cells Exposed to Erucylphosphohomocholine
Author(s) -
Wilfried Kugler,
Leo Veenman,
Yulia Shandalov,
Svetlana Leschiner,
Ilana Spanier,
M. Lakomek,
Moshe Gavish
Publication year - 2008
Publication title -
analytical cellular pathology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.576
H-Index - 24
eISSN - 2210-7185
pISSN - 2210-7177
DOI - 10.1155/2008/235368
Subject(s) - translocator protein , mitochondrial permeability transition pore , mptp , apoptosis , cytochrome c , adenine nucleotide translocator , mitochondrion , programmed cell death , microbiology and biotechnology , inner mitochondrial membrane , biology , chemistry , cancer research , pharmacology , biochemistry , neuroscience , immunology , inflammation , dopaminergic , dopamine , neuroinflammation
Background : We have previously shown that the anti-neoplastic agent erucylphosphohomocholine (ErPC3) requires the mitochondrial 18 kDa Translocator protein (TSPO), formerly known as the peripheral-type benzodiazepine receptor (PBR), to induce cell death via the mitochondrial apoptosis pathway. Methods : With the aid of the dye JC-1 and cyclosporin A, applied to glioblastoma cells, we now investigated the significance of opening of the mitochondrial permeability transition pore (MPTP) for ErPC3-induced apoptosis in interaction with the TSPO ligands, PK 11195 and Ro5 4864. Furthermore, we measured cytochrome c release, and caspase-9 and -3 activation in this paradigm. Results : The human glioblastoma cell lines, U87MG, A172 and U118MG express the MPTP-associated TSPO, voltage-dependent anion channel and adenine nucleotide transporter. Indeed, ErPC3-induced apoptosis was inhibited by the MPTP blocker cyclosporin A and by PK 11195 and Ro5 4864 in a concentration-dependent manner. Furthermore, PK 11195 and Ro5 4864 inhibited collapse of the mitochondrial membrane potential, cytochrome c release, and caspase-9 and -3 activation caused by ErPC3 treatment. Conclusions : This study shows that PK 11195 and Ro5 4864 inhibit the pro-apoptotic function of ErPC3 by blocking its capacity to cause a collapse of the mitochondrial membrane potential. Thus, the TSPO may serve to open the MPTP in response to anti-cancer drugs such as ErPC3.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom