
Gene expression profiling of skeletal muscles treated with a soluble activin type IIB receptor
Author(s) -
Fedik Rahimov,
Oliver D. King,
Leigh C. Warsing,
Rachel E. Powell,
Charles P. Emerson,
Louis M. Kunkel,
Kathryn R. Wagner
Publication year - 2011
Publication title -
physiological genomics/physiological genomics (print)
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.078
H-Index - 112
eISSN - 1531-2267
pISSN - 1094-8341
DOI - 10.1152/physiolgenomics.00223.2010
Subject(s) - myostatin , biology , activin receptor , follistatin , acvr2b , gene expression , gene expression profiling , endocrinology , medicine , gene , receptor , real time polymerase chain reaction , transforming growth factor , microbiology and biotechnology , skeletal muscle , genetics , tgf beta signaling pathway
Inhibition of the myostatin signaling pathway is emerging as a promising therapeutic means to treat muscle wasting and degenerative disorders. Activin type IIB receptor (ActRIIB) is the putative myostatin receptor, and a soluble activin receptor (ActRIIB-Fc) has been demonstrated to potently inhibit a subset of transforming growth factor (TGF)-β family members including myostatin. To determine reliable and valid biomarkers for ActRIIB-Fc treatment, we assessed gene expression profiles for quadriceps muscles from mice treated with ActRIIB-Fc compared with mice genetically lacking myostatin and control mice. Expression of 134 genes was significantly altered in mice treated with ActRIIB-Fc over a 2-wk period relative to control mice (fold change > 1.5, P < 0.001), whereas the number of significantly altered genes in mice treated for 2 days was 38, demonstrating a time-dependent response to ActRIIB-Fc in overall muscle gene expression. The number of significantly altered genes in Mstn(-/-) mice relative to control mice was substantially higher (360), but for most of these genes the expression levels in the 2-wk treated mice were closer to the levels in the Mstn(-/-) mice than in control mice (P < 10⁻³⁰). Expression levels of 30 selected genes were further validated with quantitative real-time polymerase chain reaction (qPCR), and a correlation of ≥ 0.89 was observed between the fold changes from the microarray analysis and the qPCR analysis. These data suggest that treatment with ActRIIB-Fc results in overlapping but distinct gene expression signatures compared with myostatin genetic mutation. Differentially expressed genes identified in this study can be used as potential biomarkers for ActRIIB-Fc treatment, which is currently in clinical trials as a therapeutic agent for muscle wasting and degenerative disorders.