
Genome-wide analysis of gestational gene-environment interactions in the developing kidney
Author(s) -
Yan Liu,
Yao Xiao,
Dimcho Bachvarov,
Zubaida Saifudeen,
Samir S. ElDahr
Publication year - 2014
Publication title -
physiological genomics/physiological genomics (print)
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.078
H-Index - 112
eISSN - 1531-2267
pISSN - 1094-8341
DOI - 10.1152/physiolgenomics.00035.2014
Subject(s) - biology , wnt signaling pathway , downregulation and upregulation , kidney development , gene , endocrinology , microbiology and biotechnology , medicine , kidney , embryonic stem cell , genetics
The G protein-coupled bradykinin B2 receptor (Bdkrb2) plays an important role in regulation of blood pressure under conditions of excess salt intake. Our previous work has shown that Bdkrb2 also plays a developmental role since Bdkrb2(-/-) embryos, but not their wild-type or heterozygous littermates, are prone to renal dysgenesis in response to gestational high salt intake. Although impaired terminal differentiation and apoptosis are consistent findings in the Bdkrb2(-/-) mutant kidneys, the developmental pathways downstream of gene-environment interactions leading to the renal phenotype remain unknown. Here, we performed genome-wide transcriptional profiling on embryonic kidneys from salt-stressed Bdkrb2(+/+) and Bdkrb2(-/-) embryos. The results reveal significant alterations in key pathways regulating Wnt signaling, apoptosis, embryonic development, and cell-matrix interactions. In silico analysis reveal that nearly 12% of differentially regulated genes harbor one or more Pax2 DNA-binding sites in their promoter region. Further analysis shows that metanephric kidneys of salt-stressed Bdkrb2(-/-) have a significant downregulation of Pax2 gene expression. This was corroborated in Bdkrb2(-/-);Pax2(GFP+/tg) mice, demonstrating that Pax2 transcriptional activity is significantly repressed by gestational salt-Bdkrb2 interactions. We conclude that gestational gene (Bdkrb2) and environment (salt) interactions cooperate to impact gene expression programs in the developing kidney. Suppression of Pax2 likely contributes to the defects in epithelial survival, growth, and differentiation in salt-stressed BdkrB2(-/-) mice.