
Spinal BDNF-induced phrenic motor facilitation requires PKCθ activity
Author(s) -
Ibis M. AgostoMarlin,
Gordon S. Mitchell
Publication year - 2017
Publication title -
journal of neurophysiology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.302
H-Index - 245
eISSN - 1522-1598
pISSN - 0022-3077
DOI - 10.1152/jn.00945.2016
Subject(s) - tropomyosin receptor kinase b , brain derived neurotrophic factor , protein kinase b , neurotrophic factors , mapk/erk pathway , protein kinase c , ly294002 , chemistry , pi3k/akt/mtor pathway , neuroscience , endocrinology , medicine , microbiology and biotechnology , biology , signal transduction , receptor
Spinal brain-derived neurotrophic factor (BDNF) is necessary and sufficient for certain forms of long-lasting phrenic motor facilitation (pMF). BDNF elicits pMF by binding to its high-affinity receptor, tropomyosin receptor kinase B (TrkB), on phrenic motor neurons, potentially activating multiple downstream signaling cascades. Canonical BDNF/TrkB signaling includes the 1 ) Ras/RAF/MEK/ERK MAP kinase, 2 ) phosphatidylinositol 3-kinase (PI3K)/Akt, and 3 ) PLCγ/PKC pathways. Here we demonstrate that spinal BDNF-induced pMF requires PLCγ/PKCθ in normal rats but not MEK/ERK or PI3K/Akt signaling. Cervical intrathecal injections of MEK/ERK (U0126) or PI3K/Akt (PI-828; 100 μM, 12 μl) inhibitor had no effect on BDNF-induced pMF (90 min after BDNF; U0126 + BDNF: 59 ± 14%, PI-828 + BDNF: 59 ± 8%, inhibitor vehicle + BDNF: 56 ± 7%; all P ≥ 0.05). In contrast, PKCθ inhibition with theta inhibitory peptide (TIP; 0.86 mM, 12 μl) prevented BDNF-induced pMF (90 min after BDNF; TIP + BDNF: -2 ± 2%; P ≤ 0.05 vs. other groups). Thus BDNF-induced pMF requires downstream PLCγ/PKCθ signaling, contrary to initial expectations. NEW AND NOTEWORTHY We demonstrate that BDNF-induced pMF requires downstream signaling via PKCθ but not MEK/ERK or PI3K/Akt signaling. These data are essential to understand the sequence of the cellular cascade leading to BDNF-dependent phrenic motor plasticity.