z-logo
open-access-imgOpen Access
Early life stress facilitates synapse premature unsilencing to enhance AMPA receptor function in the developing hippocampus
Author(s) -
Aycheh Al-Chami,
Alysia Ross,
Shawn Hayley,
Hongyu Sun
Publication year - 2020
Publication title -
journal of neurophysiology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.302
H-Index - 245
eISSN - 1522-1598
pISSN - 0022-3077
DOI - 10.1152/jn.00339.2020
Subject(s) - neuroscience , ampa receptor , synapse , hippocampal formation , silent synapse , hippocampus , psychology , biology , glutamate receptor , receptor , biochemistry
Chronic early life stress (ELS) increases vulnerability to psychopathologies and cognitive deficits in adulthood by disrupting the function of related neural circuits. However, whether this disruption emerges early in the developing brain remains largely unexplored. In the current study, using an established limited-bedding and nesting model of ELS in postnatal day (P)2-10 mice, we provide direct evidence that ELS caused early modification of hippocampal glutamatergic synapses in the developing brain. We demonstrated that ELS induced rapid enhancement of AMPA receptor function in hippocampal CA1 pyramidal neurons through a postsynaptic mechanism, and importantly, this was associated with premature unsilencing of NMDA receptor-only silent hippocampal synapses. These results suggest that potentiation of AMPAR function may represent an early mediator of ELS-induced alterations of neural networks in the developing brain and may potentially contribute to subsequent cognitive impairments later in life. NEW & NOTEWORTHY Early life stress (ELS) is known to increase the risk of later life cognitive deficits by disrupting neural circuit function. However, whether this disruption emerges early in the developing brain remains largely unexplored. The current study presents direct evidence that ELS prematurely unsilences hippocampal synapses to enhance AMPA receptor functions in a limited-bedding and nesting model, revealing an early mediator of ELS-induced neural circuit reorganizations.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here