z-logo
open-access-imgOpen Access
Nicotine evoked efferent transmitter release onto immature cochlear inner hair cells
Author(s) -
Y. Zhang,
Elisabeth Glowatzki,
Isabelle Roux,
Paul Fuchs
Publication year - 2020
Publication title -
journal of neurophysiology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.302
H-Index - 245
eISSN - 1522-1598
pISSN - 0022-3077
DOI - 10.1152/jn.00097.2020
Subject(s) - efferent , acetylcholine , neuroscience , cholinergic , acetylcholine receptor , cochlea , nicotinic agonist , chemistry , neurotransmitter , nicotine , biology , receptor , endocrinology , central nervous system , afferent , biochemistry
Olivocochlear neurons make temporary cholinergic synapses on inner hair cells of the rodent cochlea in the first 2 to 3 wk after birth. Repetitive stimulation of these efferent neurons causes facilitation of evoked release and increased spontaneous release that continues for seconds to minutes. Presynaptic nicotinic acetylcholine receptors (nAChRs) are known to modulate neurotransmitter release from brain neurons. The present study explores the hypothesis that presynaptic nAChRs help to increase spontaneous release from efferent terminals on cochlear hair cells. Direct application of nicotine (which does not activate the hair cells' α9α10-containing nAChRs) produces sustained efferent transmitter release, implicating presynaptic nAChRs in this response. The effect of nicotine was reduced by application of ryanodine that reduces release of calcium from intraterminal stores. NEW & NOTEWORTHY Sensory organs exhibit spontaneous activity before the onset of response to external stimuli. Such activity in the cochlea is subject to modulation by cholinergic efferent neurons that directly inhibit sensory hair cells (inner hair cells). Those efferent neurons are themselves subject to various modulatory mechanisms. One such mechanism is positive feedback by released acetylcholine onto presynaptic nicotinic acetylcholine receptors causing further release of acetylcholine.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here