z-logo
open-access-imgOpen Access
Contribution of IL-6 to the Hsp72, Hsp25, and αβ-crystallin responses to inflammation and exercise training in mouse skeletal and cardiac muscle
Author(s) -
Kimberly A. Huey,
Benjamin M. Meador
Publication year - 2008
Publication title -
journal of applied physiology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.253
H-Index - 229
eISSN - 8750-7587
pISSN - 1522-1601
DOI - 10.1152/japplphysiol.90955.2008
Subject(s) - skeletal muscle , inflammation , cardiac muscle , physical exercise , heat shock protein , medicine , endocrinology , biology , chemistry , biochemistry , gene
The heat shock proteins (Hsps) Hsp72, Hsp25, and alphaB-crystallin (alphaB C) [corrected]may protect tissues during exercise and/or inflammatory insults; however, no studies have investigated whether exercise training increases both basal and inflammation-induced expression of these Hsps in skeletal or cardiac muscle. IL-6 is produced by muscle during both exercise and inflammation and has been shown to modulate Hsp expression. These studies tested the hypothesis that voluntary wheel running (RW) increases basal and inflammation-induced Hsp72, Hsp25, and alphaB C [corrected] protein through an IL-6-dependent mechanism. We compared Hsp72, Hsp25, alphaB C, [corrected] and IL-6 protein levels 4 h after systemic inflammation induced by lipopolysaccharide (LPS) in skeletal and cardiac muscles of wild-type (IL-6(+/+)) and IL-6 deficient (IL-6(-/-)) mice after 2 wk of RW or normal cage activity (Sed). LPS significantly increased skeletal Hsp72 and Hsp25 relative to saline in Sed IL-6(+/+), but not IL-6(-/-) mice. LPS increased Hsp72 relative to saline in Sed IL-6(+/+) cardiac muscle. RW increased basal Hsp72, Hsp25, and alphaB C [corrected] in skeletal muscle in IL-6(+/+) and IL-6(-/-) mice. However, LPS was not associated with increases in any Hsp in RW IL-6(+/+) or IL-6(-/-) mice. LPS increased IL-6 protein in skeletal muscle and plasma in Sed and RW groups, with a significantly greater response in RW. The major results provide the first in vivo evidence that the absence of IL-6 is associated with reduced skeletal muscle Hsp72 and Hsp25 responses to LPS, but that IL-6 is not required for exercise-induced Hsp upregulation in skeletal or cardiac muscle.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here