
Swallowing dysfunction following radiation to the rat mylohyoid muscle is associated with sensory neuron injury
Author(s) -
Serina King,
Justin Hurley,
Zachary Carter,
Nicholas Bonomo,
Brian Wang,
Neal E. Dunlap,
Jeffrey C. Petruska
Publication year - 2021
Publication title -
journal of applied physiology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.253
H-Index - 229
eISSN - 8750-7587
pISSN - 1522-1601
DOI - 10.1152/japplphysiol.00664.2020
Subject(s) - swallowing , dysphagia , medicine , bolus (digestion) , pharynx , sensory system , anatomy , anesthesia , pathology , neuroscience , surgery , biology
Radiation-based treatments for oropharyngeal and hypopharyngeal cancers result in impairments in swallowing mobility, but the mechanisms behind the dysfunction are not clear. The purpose of this study was to determine if we could establish an animal model of radiation-induced dysphagia in which mechanisms could be examined. We hypothesized that 1 ) radiation focused at the depth of the mylohyoid muscle would alter normal bolus transport and bolus size and 2 ) radiation to the mylohyoid muscle will induce an injury/stress-like response in trigeminal sensory neurons whose input might modulate swallow. Rats were exposed to 48 or 64 Gy of radiation to the mylohyoid given 8 Gy in 6 or 8 fractions. Swallowing function was evaluated by videofluoroscopy 2 and 4 wk following treatment. Neuronal injury/stress was analyzed in trigeminal ganglion by assessing activating transcription factor (ATF)3 and GAP-43 mRNAs at 2, 4, and 8 wk post treatment. Irradiated rats exhibited decreases in bolus movement through the pharynx and alterations in bolus clearance. In addition, ATF3 and GAP-43 mRNAs were upregulated in trigeminal ganglion in irradiated rats, suggesting that radiation to mylohyoid muscle induced an injury/stress response in neurons with cell bodies that are remote from the irradiated tissue. These results suggest that radiation-induced dysphagia can be assessed in the rat and radiation induces injury/stress-like responses in sensory neurons. NEW & NOTEWORTHY Radiation-based treatments for head and neck cancer can cause significant impairments in swallowing mobility. This study provides new evidence supporting the possibility of a neural contribution to the mechanisms of swallowing dysfunction in postradiation dysphagia. Our data demonstrated that radiation to the mylohyoid muscle, which induces functional deficits in swallowing, also provokes an injury/stress-like response in the ganglion, innervating the irradiated muscle.