z-logo
open-access-imgOpen Access
Dynamic and isometric handgrip exercise increases wave reflection in healthy young adults
Author(s) -
Joseph M. Stock,
Nicholas V. Chouramanis,
Julio A. Chirinos,
David G. Edwards
Publication year - 2020
Publication title -
journal of applied physiology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.253
H-Index - 229
eISSN - 8750-7587
pISSN - 1522-1601
DOI - 10.1152/japplphysiol.00281.2020
Subject(s) - isometric exercise , pulsatile flow , reflection (computer programming) , physical medicine and rehabilitation , medicine , physical therapy , cardiology , computer science , programming language
Early return and increased magnitude of wave reflection augments pulsatile load, wastes left ventricular effort, and is associated with cardiovascular events. Acute handgrip (HG) exercise increases surrogate measures of wave reflection such as augmentation index. However, augmentation index does not allow distinguishing between timing versus magnitude of wave reflection and is affected by factors other than wave reflection per se. Wave separation analysis decomposes central pressure into relative contributions of forward (Pf) and backward (Pb) pressure wave amplitudes to calculate reflection magnitude (RM = Pb/Pf) and determine the timing of apparent wave reflection return. We tested the hypothesis that acute dynamic and isometric HG exercise increases RM and decreases reflected wave transit time (RWTT). Applanation tonometry was used to record radial artery pressure waveforms in 30 adults (25 ± 4 yr) at baseline and during dynamic and isometric HG exercise. Wave separation analysis was performed offline using a physiological flow wave to derive Pf, Pb, RM, and RWTT. We found that RM increased during dynamic and isometric HG exercise compared with baseline ( P = 0.04 and P < 0.01, respectively; baseline 40 ± 5, dynamic 43 ± 6, isometric 43 ± 7%). Meanwhile, RWTT decreased during dynamic and isometric HG exercise compared with baseline ( P = 0.03 and P < 0.001, respectively; baseline 164 ± 23, dynamic 155 ± 23, isometric 148 ± 20 ms). Moreover, the changes in RM and RWTT were not different between dynamic and isometric HG exercise. The present data suggest that wave reflection timing (RWTT) and magnitude (RM) are important factors that contribute to increased central blood pressure during HG exercise. NEW & NOTEWORTHY This study demonstrated that wave reflection magnitude is increased while reflected wave transit time is decreased during handgrip exercise in healthy young adults. The larger backward pressure waves and earlier return of these pressure waves were not different between dynamic and isometric handgrip exercise. These acute changes in wave reflection during handgrip exercise transiently augment pulsatile load.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here