
Trafficking of Na-K-ATPase and dopamine receptor molecules induced by changes in intracellular sodium concentration of renal epithelial cells
Author(s) -
Angel R. Cinelli,
Riad Efendiev,
Carlos H. Pedemonte
Publication year - 2008
Publication title -
american journal of physiology. renal physiology./american journal of physiology. renal physiology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.335
H-Index - 169
eISSN - 1931-857X
pISSN - 1522-1466
DOI - 10.1152/ajprenal.90317.2008
Subject(s) - intracellular , chemistry , sodium , apical membrane , biophysics , cytosol , epithelial polarity , reabsorption , renal sodium reabsorption , sodium–hydrogen antiporter , biochemistry , microbiology and biotechnology , membrane , biology , enzyme , organic chemistry
Most of the transepithelial transport of sodium in proximal tubules occurs through the coordinated action of the apical sodium/proton exchanger and the basolateral Na-K-ATPase. Hormones that regulate proximal tubule sodium excretion regulate the activities of these proteins. We have previously demonstrated that the level of intracellular sodium concentration modulates the regulation of Na-K-ATPase activity by angiotensin II and dopamine. An increase of a few millimolars in intracellular sodium concentration leads to increased Na-K-ATPase activity without a statistically significant increase in the number of plasma membrane Na-K-ATPase molecules, as determined by cell surface protein biotinylation. Using total internal reflection fluorescence, we detected an increased number of Na-K-ATPase molecules in cytosolic compartments adjacent to the plasma membrane, suggesting that the increased intracellular sodium concentration induces a movement of Na-K-ATPase molecules toward the plasma membrane. While intracellular compartments containing Na-K-ATPase molecules are very close to the plasma membrane, compartments containing type 1 dopamine receptors (D1Rs) are distributed in different parts of the cell cytosol. Fluorescence determinations indicate that an increased intracellular sodium concentration induces the increased colocalization of dopamine receptors with Na-K-ATPase molecules in the region of the plasma membrane. We propose that under in vivo conditions, in response to a sodium load in the lumen of proximal tubules, an increased level of intracellular sodium in epithelial cells is an early event that triggers the cellular response that leads to dopamine inhibition of proximal tubule sodium reabsorption.