z-logo
open-access-imgOpen Access
Nanotechnology and adeno-associated virus-based decorin gene therapy ameliorates peritoneal fibrosis
Author(s) -
Kunal Chaudhary,
Harold L. Moore,
Ashish Tandon,
Suneel Gupta,
Ramesh Khanna,
Rajiv R. Mohan
Publication year - 2014
Publication title -
american journal of physiology. renal physiology./american journal of physiology. renal physiology
Language(s) - English
Resource type - Journals
eISSN - 1931-857X
pISSN - 1522-1466
DOI - 10.1152/ajprenal.00653.2013
Subject(s) - decorin , fibrosis , medicine , peritoneal dialysis , lumican , extracellular matrix , pathology , population , immunology , biology , microbiology and biotechnology , environmental health , proteoglycan
Peritoneal dialysis (PD) is a life-sustaining therapy for end-stage renal disease (ESRD), used by 10-15% of the dialysis population worldwide. Peritoneal fibrosis (PF) is a known complication of long-term PD and frequently follows episodes of peritonitis, rendering the peritoneal membrane inadequate for dialysis. Transforming growth factor (TGF)-β is an inducer of fibrosis in several tissues and organs, and its overexpression has been correlated with PF. Animal models of peritonitis have shown an increase in expression of TGF-β in the peritoneal tissue. Decorin, a proteoglycan and component of the extracellular matrix, inactivates TGF-β, consequently reducing fibrosis in many tissues. Recently, gold nanoparticles (GNP) have been used for drug delivery in a variety of settings. In the present study, we tested the possibility that GNP-delivered decorin gene therapy ameliorates zymosan-mediated PF. We created a PF model using zymosan-induced peritonitis. Rats were treated with no decorin, GNP-decorin, or adeno-associated virus-decorin (AAV-decorin) and compared with controls. Tissue samples were then stained for Masson's trichrome, enface silver, and hematoxylin and eosin, and immunohistochemistry was carried out with antibodies to TGF-β1, α-smooth muscle actin (α-SMA), and VEGF. Animals which were treated with GNP-decorin and AAV-decorin gene therapy had significant reductions in PF compared with untreated animals. Compared with untreated animals, the treated animals had better preserved peritoneal mesothelial cell size, a significant decrease in peritoneal thickness, and decreased α-SMA. Quantitative PCR measurements showed a significant decrease in the peritoneal tissue levels of α-SMA, TGF-β, and VEGF in treated vs. untreated animals. This study shows that both GNP-delivered and AAV-mediated decorin gene therapies significantly decrease PF in vivo in a rodent model. This approach has important clinical translational potential in providing a therapeutic strategy to prevent PF in PD patients.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here