z-logo
open-access-imgOpen Access
Transplanted senescent renal scattered tubular-like cells induce injury in the mouse kidney
Author(s) -
Seo Rin Kim,
Kai Jiang,
Christopher M. Ferguson,
Hui Tang,
Xiaojun Chen,
Xiang Yang Zhu,
La Tonya J. Hickson,
Tamara Tchkonia,
James L. Kirkland,
Lilach O. Lerman
Publication year - 2020
Publication title -
american journal of physiology. renal physiology./american journal of physiology. renal physiology
Language(s) - English
Resource type - Journals
eISSN - 1931-857X
pISSN - 1522-1466
DOI - 10.1152/ajprenal.00535.2019
Subject(s) - senescence , kidney , biology , fibrosis , pathology , inflammation , cytokine , ex vivo , endocrinology , in vivo , immunology , medicine , microbiology and biotechnology
Cellular senescence, a permanent arrest of cell proliferation, is characterized by a senescence-associated secretory phenotype (SASP), which reinforces senescence and exerts noxious effects on adjacent cells. Recent studies have suggested that transplanting small numbers of senescent cells suffices to provoke tissue inflammation. We hypothesized that senescent cells can directly augment renal injury. Primary scattered tubular-like cells (STCs) acquired from pig kidneys were irradiated by 10 Gy of cesium radiation, and 3 wk later cells were characterized for levels of senescence and SASP markers. Control or senescent STCs were then prelabeled and injected (5 × 10 5 cells) into the aorta of C57BL/6J mice. Four weeks later, renal oxygenation was studied in vivo using 16.4-T magnetic resonance imaging and function by plasma creatinine level. Renal markers of SASP, fibrosis, and microvascular density were evaluated ex vivo. Per flow cytometry, irradiation induced senescence in 80-99% of STCs, which showed increased gene expression of senescence and SASP markers, senescence-associated β-galactosidase staining, and cytokine levels (especially IL-6) secreted in conditioned medium. Four weeks after injection, cells were detected engrafted in the mouse kidneys with no evidence for rejection. Plasma creatinine and renal tissue hypoxia increased in senescent compared with control cells. Senescent kidneys were more fibrotic, with fewer CD31 + endothelial cells, and showed upregulation of IL-6 gene expression. Therefore, exogenously delivered senescent renal STCs directly injure healthy mouse kidneys. Additional studies are needed to determine the role of endogenous cellular senescence in the pathogenesis of kidney injury and evaluate the utility of senolytic therapy.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here