z-logo
open-access-imgOpen Access
Rat alveolar type I cells proliferate, express OCT-4, and exhibit phenotypic plasticity in vitro
Author(s) -
Robert Gonzalez,
Lennell Allen,
Leland G. Dobbs
Publication year - 2009
Publication title -
american journal of physiology. lung cellular and molecular physiology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.892
H-Index - 163
eISSN - 1522-1504
pISSN - 1040-0605
DOI - 10.1152/ajplung.90389.2008
Subject(s) - biology , microbiology and biotechnology , progenitor cell , stem cell , cell type , cellular differentiation , cell , phenotype , cell culture , genetics , gene
Alveolar type I (TI) cells are large, squamous cells that cover 95-99% of the internal surface area of the lung. Although TI cells are believed to be terminally differentiated, incapable of either proliferation or phenotypic plasticity, TI cells in vitro both proliferate and express phenotypic markers of other differentiated cell types. Rat TI cells isolated in purities of >99% proliferate in culture, with a sixfold increase in cell number before the cells reach confluence; >50% of the cultured TI cells are Ki67+. At cell densities of 1-2 cells/well, approximately 50% of the cells had the capacity to form colonies. Under the same conditions, type II cells do not proliferate. Cultured TI cells express RTI40 and aquaporin 5, phenotypic markers of the TI cell phenotype. By immunofluorescence, Western blotting, and Q-PCR, TI cells express OCT-4A (POU5F1), a transcription factor associated with maintenance of the pluripotent state in stem cells. Based on the expression patterns of various marker proteins, TI cells are distinct from either of two recently described putative pulmonary multipotent cell populations, the bronchoalveolar stem cell or the OCT-4+ stem/progenitor cell. Although TI cells in adult rat lung tissue do not express either surfactant protein C (SP-C) or CC10, respective markers of the TII and Clara cell phenotypes, in culture TI cells can be induced to express both SP-C and CC10. Together, the findings that TI cells proliferate and exhibit phenotypic plasticity in vitro raise the possibility that TI cells may have similar properties in vivo.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here