z-logo
open-access-imgOpen Access
Cadmium-mediated toxicity of lung epithelia is enhanced through NF-κB-mediated transcriptional activation of the human zinc transporter ZIP8
Author(s) -
Jessica R. Napolitano,
Ming Jie Liu,
Shengying Bao,
Melissa Crawford,
Patrick NanaSinkam,
Estelle CormetBoyaka,
Daren L. Knoell
Publication year - 2012
Publication title -
american journal of physiology. lung cellular and molecular physiology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.892
H-Index - 163
eISSN - 1522-1504
pISSN - 1040-0605
DOI - 10.1152/ajplung.00351.2011
Subject(s) - toxicity , chemistry , apoptosis , lung , cadmium , cell , tumor necrosis factor alpha , inflammation , programmed cell death , zinc , transporter , pharmacology , biochemistry , medicine , immunology , organic chemistry , gene
Cadmium (Cd), a toxic heavy metal and carcinogen that is abundantly present in cigarette smoke, is a cause of smoking-induced lung disease. SLC39A8 (ZIP8), a zinc transporter, is a major portal for Cd uptake into cells. We have recently identified that ZIP8 expression is under the transcriptional control of the NF-κB pathway. On the basis of this, we hypothesized that cigarette-smoke induced inflammation would increase ZIP8 expression in lung epithelia, thereby enhancing Cd uptake and cell toxicity. Herein we report that ZIP8 is a central mediator of Cd-mediated toxicity. TNF-α treatment of primary human lung epithelia and A549 cells induced ZIP8 expression, resulting in significantly higher cell death attributable to both apoptosis and necrosis following Cd exposure. Inhibition of the NF-κB pathway and ZIP8 expression significantly reduced cell toxicity. Zinc (Zn), a known cytoprotectant, prevented Cd-mediated cell toxicity via ZIP8 uptake. Consistent with cell culture findings, a significant increase in ZIP8 mRNA and protein expression was observed in the lung of chronic smokers compared with nonsmokers. From these studies, we conclude that ZIP8 expression is induced in lung epithelia in an NF-κB-dependent manner, thereby resulting in increased cell death in the presence of Cd. From this we contend that ZIP8 plays a critical role at the interface between micronutrient (Zn) metabolism and toxic metal exposure (Cd) in the lung microenvironment following cigarette smoke exposure. Furthermore, dietary Zn intake, or a lack thereof, may be a contributing factor in smoking-induced lung disease.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here