z-logo
open-access-imgOpen Access
Sox17 modulates Wnt3A/β-catenin-mediated transcriptional activation of the Lef-1 promoter
Author(s) -
Xiaoming Liu,
Meihui Luo,
Weiliang Xie,
James M. Wells,
Michael J. Goodheart,
John F. Engelhardt
Publication year - 2010
Publication title -
american journal of physiology. lung cellular and molecular physiology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.892
H-Index - 163
eISSN - 1522-1504
pISSN - 1040-0605
DOI - 10.1152/ajplung.00140.2010
Subject(s) - wnt signaling pathway , enhancer , transcription factor , wnt3a , biology , progenitor cell , microbiology and biotechnology , ectopic expression , beta catenin , promoter , tcf4 , cancer research , gene expression , stem cell , gene , genetics , signal transduction
Wnt/β-catenin-dependent activation of lymphoid enhancer factor 1 (Lef-1) plays an important role in numerous developmental processes. In this context, transcription of the Lef-1 gene is increased by Wnt-mediated TCF4/β-catenin activation on the Lef-1 promoter through mechanisms that remain poorly defined. In mouse airway submucosal gland progenitor cells, Wnt3A transiently induces Lef-1 gene expression, and this process is required for epithelial cell proliferation and glandular morphogenesis. In the present study, we sought to identify additional candidate transcriptional regulators of the Lef-1 gene during glandular morphogenesis. To this end, we found that Sox17 expression is dramatically downregulated in early glandular progenitor cells that induce Lef-1 expression. Wnt stimulation of undifferentiated primary airway epithelial cells induced similar changes in Sox17 and Lef-1 expression. Reporter assays revealed that ectopic expression of Sox17 suppresses Wnt3A/β-catenin activation of the Lef-1 promoter in cell lines. EMSA and ChIP analyses defined several Sox17- and TCF4-binding sites that collaborate in transcriptional control of the Lef-1 promoter. More specifically, Sox17 bound to four sites in the Lef-1 promoter, either directly or indirectly through TCF complexes. The DNA- or β-catenin-binding domains of Sox17 controlled context-specific binding of Sox17/TCF complexes on the Lef-1 promoter. Combinatorial site-directed mutagenesis of Sox17- or TCF-binding sites in the Lef-1 promoter demonstrated that these sites control Wnt/β-catenin-mediated induction and/or repression. These findings demonstrate for the first time that Sox17 can directly regulate Wnt/β-catenin-dependent transcription of the Lef-1 promoter and reveal new context-dependent binding sites in the Lef-1 promoter that facilitate protein-protein interactions between Sox17 and TCF4.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here