
Enhancement of myofilament calcium sensitivity by acute hypoxia in rat distal pulmonary arteries
Author(s) -
Letitia A. Weigand,
Larissa A. Shimoda,
J. J. Sylvester
Publication year - 2011
Publication title -
american journal of physiology. lung cellular and molecular physiology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.892
H-Index - 163
eISSN - 1522-1504
pISSN - 1040-0605
DOI - 10.1152/ajplung.00068.2011
Subject(s) - nitric oxide , hypoxia (environmental) , medicine , myofilament , chemistry , contraction (grammar) , endocrinology , vasoconstriction , endothelium , rho associated protein kinase , isometric exercise , anatomy , myocyte , biology , oxygen , phosphorylation , biochemistry , organic chemistry
Hypoxic contraction of pulmonary arterial smooth muscle is thought to require increases in both intracellular Ca(2+) concentration ([Ca(2+)](i)) and myofilament Ca(2+) sensitivity, which may or may not be endothelium-dependent. To examine the effects of hypoxia and endothelium on Ca(2+) sensitivity in pulmonary arterial smooth muscle, we measured the relation between [Ca(2+)](i) and isometric force at 37°C during normoxia (21% O(2)-5% CO(2)) and after 30 min of hypoxia (1% O(2)-5% CO(2)) in endothelium-intact (E+) and -denuded (E-) rat distal intrapulmonary arteries (IPA) permeabilized with staphylococcal α-toxin. Endothelial denudation enhanced Ca(2+) sensitivity during normoxia but did not alter the effects of hypoxia, which shifted the [Ca(2+)](i)-force relation to higher force in E+ and E- IPA. Neither hypoxia nor endothelial denudation altered Ca(2+) sensitivity in mesenteric arteries. In E+ and E- IPA, hypoxic enhancement of Ca(2+) sensitivity was abolished by the nitric oxide synthase inhibitor N(ω)-nitro-l-arginine methyl ester (30 μM), which shifted normoxic [Ca(2+)](i)-force relations to higher force. In E- IPA, the Rho kinase antagonist Y-27632 (10 μM) shifted the normoxic [Ca(2+)](i)-force relation to lower force but did not alter the effects of hypoxia. These results suggest that acute hypoxia enhanced myofilament Ca(2+) sensitivity in rat IPA by decreasing nitric oxide production and/or activity in smooth muscle, thereby revealing a high basal level of Ca(2+) sensitivity, due in part to Rho kinase, which otherwise did not contribute to Ca(2+) sensitization by hypoxia.