
The relative balance of GM-CSF and TGF-β1 regulates lung epithelial barrier function
Author(s) -
Christian E. Overgaard,
Barbara Schlingmann,
StevenClaude Dorsainvil White,
Christina Ward,
Xian Fan,
Snehasikta Swarnakar,
Lou Ann S. Brown,
David M. Guidot,
Michael Koval
Publication year - 2015
Publication title -
american journal of physiology. lung cellular and molecular physiology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.892
H-Index - 163
eISSN - 1522-1504
pISSN - 1040-0605
DOI - 10.1152/ajplung.00042.2014
Subject(s) - tight junction , barrier function , bronchoalveolar lavage , paracellular transport , ards , lung , transforming growth factor , cytokine , biology , medicine , immunology , endocrinology , pathology , microbiology and biotechnology , permeability (electromagnetism) , genetics , membrane
Lung barrier dysfunction is a cardinal feature of the acute respiratory distress syndrome (ARDS). Alcohol abuse, which increases the risk of ARDS two- to fourfold, induces transforming growth factor (TGF)-β1, which increases epithelial permeability and impairs granulocyte/macrophage colony-stimulating factor (GM-CSF)-dependent barrier integrity in experimental models. We hypothesized that the relative balance of GM-CSF and TGF-β1 signaling regulates lung epithelial barrier function. GM-CSF and TGF-β1 were tested separately and simultaneously for their effects on lung epithelial cell barrier function in vitro. TGF-β1 alone caused an ∼ 25% decrease in transepithelial resistance (TER), increased paracellular flux, and was associated with projections perpendicular to tight junctions ("spikes") containing claudin-18 that colocalized with F-actin. In contrast, GM-CSF treatment induced an ∼ 20% increase in TER, decreased paracellular flux, and showed decreased colocalization of spike-associated claudin-18 with F-actin. When simultaneously administered to lung epithelial cells, GM-CSF antagonized the effects of TGF-β1 on epithelial barrier function in cultured cells. Given this, GM-CSF and TGF-β1 levels were measured in bronchoalveolar lavage (BAL) fluid from patients with ventilator-associated pneumonia and correlated with markers for pulmonary edema and patient outcome. In patient BAL fluid, protein markers of lung barrier dysfunction, serum α2-macroglobulin, and IgM levels were increased at lower ratios of GM-CSF/TGF-β1. Critically, patients who survived had significantly higher GM-CSF/TGF-β1 ratios than nonsurviving patients. This study provides experimental and clinical evidence that the relative balance between GM-CSF and TGF-β1 signaling is a key regulator of lung epithelial barrier function. The GM-CSF/TGF-β1 ratio in BAL fluid may provide a concentration-independent biomarker that can predict patient outcomes in ARDS.