
Angiotensin-(1–7) attenuates angiotensin II-induced cardiac remodeling associated with upregulation of dual-specificity phosphatase 1
Author(s) -
LaTronya McCollum,
Patricia E. Gallagher,
E. Ann Tallant
Publication year - 2012
Publication title -
american journal of physiology. heart and circulatory physiology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.524
H-Index - 197
eISSN - 1522-1539
pISSN - 0363-6135
DOI - 10.1152/ajpheart.00908.2011
Subject(s) - medicine , endocrinology , angiotensin ii , atrial natriuretic peptide , renin–angiotensin system , brain natriuretic peptide , phosphatase , mapk/erk pathway , blood pressure , natriuretic peptide , ventricular remodeling , fibrosis , downregulation and upregulation , phosphorylation , heart failure , biology , microbiology and biotechnology , biochemistry , gene
Chronic hypertension induces cardiac remodeling, including left ventricular hypertrophy and fibrosis, through a combination of both hemodynamic and humoral factors. In previous studies, we showed that the heptapeptide ANG-(1-7) prevented mitogen-stimulated growth of cardiac myocytes in vitro, through a reduction in the activity of the MAPKs ERK1 and ERK2. In this study, saline- or ANG II-infused rats were treated with ANG-(1-7) to determine whether the heptapeptide reduces myocyte hypertrophy in vivo and to identify the signaling pathways involved in the process. ANG II infusion into normotensive rats elevated systolic blood pressure >50 mmHg, in association with increased myocyte cross-sectional area, ventricular atrial natriuretic peptide mRNA, and ventricular brain natriuretric peptide mRNA. Although infusion with ANG-(1-7) had no effect on the ANG II-stimulated elevation in blood pressure, the heptapeptide hormone significantly reduced the ANG II-mediated increase in myocyte cross-sectional area, interstitial fibrosis, and natriuretic peptide mRNAs. ANG II increased phospho-ERK1 and phospho-ERK2, whereas cotreatment with ANG-(1-7) reduced the phosphorylation of both MAPKs. Neither ANG II nor ANG-(1-7) altered the ERK1/2 MAPK kinase MEK1/2. However, ANG-(1-7) infusion, with or without ANG II, increased the MAPK phosphatase dual-specificity phosphatase (DUSP)-1; in contrast, treatment with ANG II had no effect on DUSP-1, suggesting that ANG-(1-7) upregulates DUSP-1 to reduce ANG II-stimulated ERK activation. These results indicate that ANG-(1-7) attenuates cardiac remodeling associated with a chronic elevation in blood pressure and upregulation of a MAPK phosphatase and may be cardioprotective in patients with hypertension.