z-logo
open-access-imgOpen Access
Role of estrogen receptor subtypes in estrogen-induced organ-specific vasorelaxation after trauma-hemorrhage
Author(s) -
Zheng F. Ba,
Irshad H. Chaudry
Publication year - 2008
Publication title -
american journal of physiology. heart and circulatory physiology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.524
H-Index - 197
eISSN - 1522-1539
pISSN - 0363-6135
DOI - 10.1152/ajpheart.00707.2008
Subject(s) - vasoconstriction , medicine , endocrinology , hypoxic pulmonary vasoconstriction , estrogen , kidney , perfusion , estrogen receptor , agonist , endothelin receptor , receptor , cancer , breast cancer
Although endothelin-1 (ET-1)-induced organ hypoperfusion after trauma-hemorrhage is improved by estrogen administration, it remains unclear whether estrogen receptor (ER) subtypes play any role in the attenuation of ET-1-induced vasoconstriction in any specific organ bed. To investigate this, isolated perfusion experiments in the heart, liver, small intestine, kidney, and lung were carried out in sham, at the time of maximum bleedout (MBO; i.e., 5-cm midline incision, with removal of 60% of circulating blood volume over 45 min to maintain a mean blood pressure of 40 mmHg), and 2 h after trauma-hemorrhage and resuscitation (T-H/R). Organ-specific ET-1-induced vasoconstriction was evaluated, and the effects of 17beta-estradiol (E2) and ER-specific agonists propylpyrazole triol (PPT; ERalpha agonist) and diarylpropionitrile (DPN; ERbeta agonist) were determined. ET-1 induced the greatest vasoconstriction in sham animals, with the strongest response in the kidneys, followed by the small intestine and liver. ET-1-induced responses were weakest in the heart and lungs. ET-1-induced vasoconstriction was evident at the time of MBO but was significantly decreased at 2 h after T-H/R. ERbeta plays an important role in cardiac performance, as evidenced by improved heart performance (+dP/dt) in the presence of DPN. DPN also induced a greater effect than PPT in the reduction of ET-1-induced vasoconstriction in the kidneys and lungs. In contrast, PPT attenuated ET-1-induced vasoconstriction in the liver, whereas both DPN and PPT were equally effective in the small intestine. The increased +dP/dt values induced by E2, DPN, or PPT were evident at the time of MBO but were significantly decreased at 2 h after T-H/R. These data indicate that the effects of ET-1 on vasoconstriction and the role of ER subtypes in estrogen-induced vasorelaxation are organ specific and temporally specific after trauma-hemorrhage.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here