
Nonanticoagulant heparin reduces myocyte Na+and Ca2+loading during simulated ischemia and decreases reperfusion injury
Author(s) -
William H. Barry,
Xiu Q. Zhang,
Michael E. Halkos,
Jakob VintenJohansen,
Noriko Saegusa,
Kenneth W. Spitzer,
Nobuhiro Matsuoka,
Michael F. Sheets,
Narayanam V. Rao,
Thomas P. Kennedy
Publication year - 2010
Publication title -
american journal of physiology. heart and circulatory physiology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.524
H-Index - 197
eISSN - 1522-1539
pISSN - 0363-6135
DOI - 10.1152/ajpheart.00316.2009
Subject(s) - ischemia , heparin , myocyte , reperfusion injury , chemistry , cardiology , medicine
Heparin desulfated at the 2-O and 3-O positions (ODSH) decreases canine myocardial reperfusion injury. We hypothesized that this occurs from effects on ion channels rather than solely from anti-inflammatory activities, as previously proposed. We studied closed-chest pigs with balloon left anterior descending coronary artery occlusion (75-min) and reperfusion (3-h). ODSH effects on [Na(+)](i) (Na Green) and [Ca(2+)](i) (Fluo-3) were measured by flow cytometry in rabbit ventricular myocytes after 45-min of simulated ischemia [metabolic inhibition with 2 mM cyanide, 0 glucose, 37 degrees C, pacing at 0.5 Hz; i.e., pacing-metabolic inhibition (PMI)]. Na(+)/Ca(2+) exchange (NCX) activity and Na(+) channel function were assessed by voltage clamping. ODSH (15 mg/kg) 5 min before reperfusion significantly decreased myocardial necrosis, but neutrophil influx into reperfused myocardium was not consistently reduced. ODSH (100 microg/ml) reduced [Na(+)](i) and [Ca(2+)](i) during PMI. The NCX inhibitor KB-R7943 (10 microM) or the late Na(+) current (I(Na-L)) inhibitor ranolazine (10 microM) reduced [Ca(2+)](i) during PMI and prevented effects of ODSH on Ca(2+) loading. ODSH also reduced the increase in Na(+) loading in paced myocytes caused by 10 nM sea anemone toxin II, a selective activator of I(Na-L). ODSH directly stimulated NCX and reduced I(Na-L). These results suggest that in the intact heart ODSH reduces Na(+) influx during early reperfusion, when I(Na-L) is activated by a burst of reactive oxygen production. This reduces Na(+) overload and thus Ca(2+) influx via NCX. Stimulation of Ca(2+) extrusion via NCX later after reperfusion may also reduce myocyte Ca(2+) loading and decrease infarct size.