z-logo
open-access-imgOpen Access
Calcium/calmodulin-dependent phosphorylation of tumor protein D52 on serine residue 136 may be mediated by CAMK2δ6
Author(s) -
Catherine S. Chew,
Xunsheng Chen,
Hanfang Zhang,
Eric A. Berg,
Han Zhang
Publication year - 2008
Publication title -
american journal of physiology. gastrointestinal and liver physiology/american journal of physiology: gastrointestinal and liver physiology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.644
H-Index - 169
eISSN - 1522-1547
pISSN - 0193-1857
DOI - 10.1152/ajpgi.90345.2008
Subject(s) - phosphorylation , calmodulin , protein kinase a , kinase , protein kinase c , biology , biochemistry , gene isoform , microbiology and biotechnology , chemistry , calcium , protein phosphorylation , serine , calcium in biology , intracellular , enzyme , organic chemistry , gene
Tumor protein D52 is expressed at relatively high levels in cells within the gastrointestinal tract that undergo classical exocytosis and is overexpressed in several cancers. Current evidence supports a role for D52 in the regulation of vesicular trafficking. D52 function(s) are regulated by calcium-dependent phosphorylation; however, the intracellular mechanisms that mediate this process are not well characterized. The goal of this study was to identify the calcium-dependent phosphorylation site(s) in D52 and to characterize the protein kinase(s) that mediate this phosphorylation. Using mass spectrometry and site-directed mutagenesis, we identified a single amino acid residue, S(136), that undergoes increased phosphorylation upon elevation of intracellular Ca(2+) concentration. A phosphospecific antibody (pS(136)) was produced and used to characterize D52 kinase activity in gastric mucosal, colonic T84, and HEK293 cells. By using D52 as a substrate, a protein kinase with a molecular weight (M(r)) of approximately 50 kDa was identified with "in gel" assays. This kinase comigrated with rat brain calcium/calmodulin-dependent protein kinase (CAMK2)alpha cross-reacted with pan-specific CAMK2 antibodies as well as with anti-active CAMK2 (pT(286/287)) antibody when activated. Carbachol-stimulated phosphorylation of S(136) was inhibited by the CAMK2 inhibitor KN93 (IC(50) 38 microM) and by the calmodulin antagonist W7 (IC(50) 3.3 nM). A previously uncharacterized CAMK2 isoform, CAMK2delta6, which has the same domain structure and M(r) as CAM2alpha, was identified in gastric mucosa by RT-PCR. The cloned, expressed protein comigrated with D52 kinase and colocalized with D52 protein in T84 and HEK293 cells. These findings support a role for CAMK2delta6 in the mediation of D52 phosphorylation.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here