z-logo
open-access-imgOpen Access
Mice lacking the Na+/H+ exchanger 2 have impaired recovery of intestinal barrier function
Author(s) -
Adam J. Moeser,
Prashant K. Nighot,
Kathleen A. Ryan,
Janet E. Simpson,
Lane L. Clarke,
Anthony T. Blikslager
Publication year - 2008
Publication title -
american journal of physiology. gastrointestinal and liver physiology/american journal of physiology: gastrointestinal and liver physiology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.644
H-Index - 169
eISSN - 1522-1547
pISSN - 0193-1857
DOI - 10.1152/ajpgi.00538.2007
Subject(s) - occludin , tight junction , barrier function , in vivo , ussing chamber , claudin , chemistry , in vitro , microbiology and biotechnology , biology , biochemistry
Ischemic injury induces breakdown of the intestinal barrier. Recent studies in porcine postischemic tissues indicate that inhibition of NHE2 results in enhanced recovery of barrier function in vitro via a process involving interepithelial tight junctions. To further study this process, recovery of barrier function was assessed in wild-type (NHE2(+/+)) and NHE2(-/-) mice in vivo and wild-type mice in vitro. Mice were subjected to complete mesenteric ischemia in vivo, after which barrier function was measured by blood-to-lumen mannitol clearance over a 3-h recovery period or measurement of transepithelial electrical resistance (TER) in Ussing chambers immediately following ischemia. Tissues were assessed for expression of select junctional proteins. Compared with NHE2(+/+) mice, NHE2(-/-) mice had greater intestinal permeability during the postischemic recovery process. In contrast to prior porcine studies, pharmacological inhibition of NHE2 in postischemic tissues from wild-type mice also resulted in significant reductions in TER. Mucosa from NHE2(-/-) mice displayed a shift of occludin and claudin-1 expression to the Triton-X-soluble membrane fractions and showed disruption of occludin and claudin-1 localization patterns following injury. This was qualitatively and quantitatively recovered in NHE2(+/+) mice compared with NHE2(-/-) mice by the end of the 3-h recovery period. Serine phosphorylation of occludin and claudin-1 was downregulated in NHE2(-/-) postischemia compared with wild-type mice. These data indicate an important role for NHE2 in recovery of barrier function in mice via a mechanism involving tight junctions.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here