z-logo
open-access-imgOpen Access
PKCε-dependent and -independent effects of taurolithocholate on PI3K/PKB pathway and taurocholate uptake in HuH-NTCP cell line
Author(s) -
Christopher M. Schonhoff,
Ai Yamazaki,
Simon Hohenester,
Cynthia R. L. Webster,
Bernard Bouscarel,
M. Sawkat Anwer
Publication year - 2009
Publication title -
american journal of physiology. gastrointestinal and liver physiology/american journal of physiology: gastrointestinal and liver physiology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.644
H-Index - 169
eISSN - 1522-1547
pISSN - 0193-1857
DOI - 10.1152/ajpgi.00177.2009
Subject(s) - pi3k/akt/mtor pathway , microbiology and biotechnology , chemistry , neuroscience , protein kinase b , cell culture , line (geometry) , cancer research , medicine , biology , signal transduction , genetics , geometry , mathematics
The cholestatic bile acid taurolithocholate (TLC) inhibits biliary secretion of organic anions and hepatic uptake of taurocholate (TC). TLC has been suggested to induce retrieval of Mrp2 from the canalicular membrane via the phosphoinositide-3-kinase (PI3K)/PKB-dependent activation of novel protein kinase Cepsilon (nPKCepsilon) in rat hepatocytes. The aim of the present study was to determine whether TLC-induced inhibition of TC uptake may also involve PI3K-dependent activation of PKCepsilon in HuH7 cells stably transfected with human Na(+)-dependent TC-cotransporting polypeptide (NTCP) (HuH-NTCP cells). To avoid direct competition for uptake, cells were pretreated with TLC, washed, and then incubated with (3)H-TC to determine TC uptake. TLC produced time- and dose-dependent inhibition of TC uptake. TLC inhibited TC uptake competitively without affecting NTCP membrane translocation. A PI3K inhibitor failed to reverse TLC-induced TC uptake inhibition and TLC-inhibited PKB phosphorylation. TLC did activate nPKCepsilon as evidenced by increased membrane translocation and nPKCepsilon-Ser(729) phosphorylation. Overexpression of dominant negative-nPKCepsilon reversed TLC-induced inhibition of PKB phosphorylation but not of TC uptake. Finally, cAMP prevented TLC-induced inhibition of TC uptake via the PI3K pathway, and the prevention is due to the sum of cAMP-induced stimulation and TLC-induced inhibition of TC uptake. Taken together, these results suggest that TLC-induced inhibition of PKB, but not of TC uptake, is mediated via nPKCepsilon. Activation of nPKCepsilon and inhibition of TC uptake by TLC are not mediated via the PI3K/PKB pathway.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here