z-logo
open-access-imgOpen Access
Identification of a novel phosphorylation site in adipose triglyceride lipase as a regulator of lipid droplet localization
Author(s) -
Xin Xie,
Paul R. Langlais,
Xiaodong Zhang,
Bradlee L. Heckmann,
Alicia M. Saarinen,
Lawrence J. Mandarino,
Jun Li
Publication year - 2014
Publication title -
endocrinology and metabolism/american journal of physiology: endocrinology and metabolism
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.507
H-Index - 201
eISSN - 1522-1555
pISSN - 0193-1849
DOI - 10.1152/ajpendo.00663.2013
Subject(s) - adipose triglyceride lipase , phosphorylation , lipid droplet , lipolysis , lipase , mutant , chemistry , regulator , mutation , microbiology and biotechnology , biochemistry , enzyme , biology , adipose tissue , gene
Adipose triglyceride lipase (ATGL), the rate-limiting enzyme for triacylglycerol (TG) hydrolysis, has long been known to be a phosphoprotein. However, the potential phosphorylation events that are involved in the regulation of ATGL function remain incompletely defined. Here, using a combinatorial proteomics approach, we obtained evidence that at least eight different sites of ATGL can be phosphorylated in adipocytes. Among them, Thr³⁷² resides within the hydrophobic region known to mediate lipid droplet (LD) targeting. Although it had no impact on the TG hydrolase activity, substitution of phosphorylation-mimic Asp for Thr³⁷² eliminated LD localization and LD-degrading capacity of ATGL expressed in HeLa cells. In contrast, mutation of Thr³⁷² to Ala gave a protein that bound LDs and functioned the same as the wild-type protein. In nonstimulated adipocytes, the Asp mutation led to decreased LD association and basal lipolytic activity of ATGL, whereas the Ala mutation produced opposite effects. Moreover, the LD translocation of ATGL upon β-adrenergic stimulation was also compromised by the Asp mutation. In accord with these findings, the Ala mutation promoted and the Asp mutation attenuated the capacity of ATGL to mediate lipolysis in adipocytes under both basal and stimulated conditions. Collectively, these studies identified Thr³⁷² as a novel phosphorylation site that may play a critical role in determining subcellular distribution as well as lipolytic action of ATGL.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here