z-logo
open-access-imgOpen Access
Skeletal muscle mitochondrial adaptations induced by long-term cigarette smoke exposure
Author(s) -
Stephen T Decker,
OhSung Kwon,
Jia Zhao,
John R. Hoidal,
Thomas Heuckstadt,
Russell S. Richardson,
Karl Sanders,
Gwenael Layec
Publication year - 2021
Publication title -
endocrinology and metabolism/american journal of physiology: endocrinology and metabolism
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.507
H-Index - 201
eISSN - 1522-1555
pISSN - 0193-1849
DOI - 10.1152/ajpendo.00544.2020
Subject(s) - skeletal muscle , cigarette smoke , oxidative stress , medicine , copd , smoke , exercise intolerance , physiology , phenotype , cigarette smoking , endocrinology , biology , chemistry , genetics , environmental health , gene , heart failure , organic chemistry
Because patients with chronic obstructive pulmonary disease (COPD) are often physically inactive, it is still unclear whether the lower respiratory capacity in the locomotor muscles of these patients is due to cigarette smoking per se or is secondary to physical deconditioning. Accordingly, the purpose of this study was to examine mitochondrial alterations in the quadriceps muscle of 10 mice exposed to 8 mo of cigarette smoke, a sedentary mouse model of emphysema, and 9 control mice, using immunoblotting, spectrophotometry, and high-resolution respirometry in permeabilized muscle fibers. Mice exposed to smoke displayed a twofold increase in the oxidative stress marker, 4-HNE, ( P < 0.05) compared with control mice. This was accompanied by significant decrease in protein expression of UCP3 (65%), ANT (58%), and mitochondrial complexes II-V (∼60%-75%). In contrast, maximal ADP-stimulated respiration with complex I and II substrates (CON: 23.6 ± 6.6 and SMO: 19.2 ± 8.2 ρM·mg -1 ·s -1 ) or octanoylcarnitine (CON: 21.8 ± 9.0 and SMO: 16.5 ± 6.6 ρM·mg -1 ·s -1 ) measured in permeabilized muscle fibers, as well as citrate synthase activity, were not significantly different between groups. Collectively, our findings revealed that sedentary mice exposed to cigarette smoke for 8 mo, which is typically associated with pulmonary inflammation and emphysema, exhibited a preserved mitochondrial respiratory capacity for various substrates, including fatty acid, in the skeletal muscle. However, the mitochondrial adaptations induced by cigarette smoke favored the development of chronic oxidative stress, which can indirectly contribute to augment the susceptibility to muscle fatigue and exercise intolerance. NEW & NOTEWORTHY It is unclear whether the exercise intolerance and skeletal muscle mitochondrial dysfunction observed in patients with COPD is due to cigarette smoke exposure, per se, or if they are secondary consequences to inactivity. Herein, while long-term exposure to cigarette smoke induces oxidative stress and an altered skeletal muscle phenotype, cigarette smoke does not directly contribute to mitochondrial dysfunction. With this evidence, we demonstrate the critical role of physical inactivity in cigarette smoke-related skeletal muscle dysfunction.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here