
Determining pancreatic β-cell compensation for changing insulin sensitivity using an oral glucose tolerance test
Author(s) -
Thomas P. J. Solomon,
Steven K. Malin,
Kristian Karstoft,
Sine H. Knudsen,
Jacob M. Haus,
Matthew J. Laye,
Maria Pedersen,
Bente Klarlund Pedersen,
John P. Kirwan
Publication year - 2014
Publication title -
endocrinology and metabolism/american journal of physiology: endocrinology and metabolism
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.507
H-Index - 201
eISSN - 1522-1555
pISSN - 0193-1849
DOI - 10.1152/ajpendo.00269.2014
Subject(s) - medicine , endocrinology , insulin , type 2 diabetes , diabetes mellitus , impaired glucose tolerance , glucose tolerance test , insulin sensitivity , insulin resistance
Plasma glucose, insulin, and C-peptide responses during an OGTT are informative for both research and clinical practice in type 2 diabetes. The aim of this study was to use such information to determine insulin sensitivity and insulin secretion so as to calculate an oral glucose disposition index (DI(OGTT)) that is a measure of pancreatic β-cell insulin secretory compensation for changing insulin sensitivity. We conducted an observational study of n = 187 subjects, representing the entire glucose tolerance continuum from normal glucose tolerance to type 2 diabetes. OGTT-derived insulin sensitivity (S(I OGTT)) was calculated using a novel multiple-regression model derived from insulin sensitivity measured by hyperinsulinemic euglycemic clamp as the independent variable. We also validated the novel S(I OGTT) in n = 40 subjects from an independent data set. Plasma C-peptide responses during OGTT were used to determine oral glucose-stimulated insulin secretion (GSIS(OGTT)), and DI(OGTT) was calculated as the product of S(I OGTT) and GSIS(OGTT). Our novel S(I OGTT) showed high agreement with clamp-derived insulin sensitivity (typical error = +3.6%; r = 0.69, P < 0.0001) and that insulin sensitivity was lowest in subjects with impaired glucose tolerance and type 2 diabetes. GSIS(OGTT) demonstrated a significant inverse relationship with S(I OGTT). GSIS(OGTT) was lowest in normal glucose-tolerant subjects and greatest in those with impaired glucose tolerance. DI(OGTT) was sequentially lower with advancing glucose intolerance. We hereby derive and validate a novel OGTT-derived measurement of insulin sensitivity across the entire glucose tolerance continuum and demonstrate that β-cell compensation for changing insulin sensitivity can be readily calculated from clinical variables collected during OGTT.