
Relaxin-3 stimulates the hypothalamic-pituitary-gonadal axis
Author(s) -
Barbara McGowan,
Sarah A. Stanley,
Joe Donovan,
Emily L. Thompson,
Michael Patterson,
Nina Semjonous,
James Gardiner,
Kevin G. Murphy,
Mohammed A. Ghatei,
Stephen R. Bloom
Publication year - 2008
Publication title -
endocrinology and metabolism/american journal of physiology: endocrinology and metabolism
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.507
H-Index - 201
eISSN - 1522-1555
pISSN - 0193-1849
DOI - 10.1152/ajpendo.00028.2008
Subject(s) - relaxin , medicine , endocrinology , hypothalamus , neuropeptide , luteinizing hormone , biology , gonadotropin releasing hormone , hypothalamic–pituitary–gonadal axis , energy homeostasis , receptor , hormone
The hypothalamus plays a key role in the regulation of both energy homeostasis and reproduction. Evidence suggests that relaxin-3, a recently discovered member of the insulin superfamily, is an orexigenic hypothalamic neuropeptide. Relaxin-3 is thought to act in the brain via the RXFP3 receptor, although the RXFP1 receptor may also play a role. Relaxin-3, RXFP3, and RXFP1 are present in the hypothalamic paraventricular nucleus, an area with a well-characterized role in the regulation of energy balance that also modulates reproductive function by providing inputs to hypothalamic gonadotropin-releasing hormone (GnRH) neurons. Other members of the relaxin family are known to play a role in the regulation of reproduction. However, the effects of relaxin-3 on reproductive function are unknown. We studied the role of relaxin-3 in the regulation of the hypothalamo-pituitary-gonadal (HPG) axis. Intracerebroventricular (5 nmol) and intraparaventricular (540-1,620 pmol) administration of human relaxin-3 (H3) in adult male Wistar rats significantly increased plasma luteinizing hormone (LH) 30 min postinjection. This effect was blocked by pretreatment with a peripheral GnRH antagonist. Central administration of human relaxin-2 showed no significant effect on plasma LH. H3 dose-dependently stimulated the release of GnRH from hypothalamic explants and GT(1)-7 cells, which express RXFP1 and RXFP3, but did not influence LH or follicle-stimulating hormone release from pituitary fragments in vitro. We have demonstrated a novel role for relaxin-3 in the stimulation of the HPG axis, putatively via hypothalamic GnRH neurons. Relaxin-3 may act as a central signal linking nutritional status and reproductive function.