z-logo
open-access-imgOpen Access
Endothelial cells isolated from caveolin-2 knockout mice display higher proliferation rate and cell cycle progression relative to their wild-type counterparts
Author(s) -
Leike Xie,
Philippe G. Frank,
Michael P. Lisanti,
Grzegorz Sowa
Publication year - 2010
Publication title -
american journal of physiology. cell physiology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.432
H-Index - 181
eISSN - 1522-1563
pISSN - 0363-6143
DOI - 10.1152/ajpcell.00401.2009
Subject(s) - cell cycle , retinoblastoma protein , propidium iodide , cell growth , cyclin , flow cytometry , biology , kinase , microbiology and biotechnology , wild type , cyclin e , cyclin a , phosphorylation , cyclin b1 , cell cycle checkpoint , cell , cyclin dependent kinase 1 , apoptosis , biochemistry , programmed cell death , mutant , gene
The goal of this study was to determine whether caveolin-2 (Cav-2) is capable of controlling endothelial cell (EC) proliferation in vitro. To realize this goal, we have directly compared proliferation rates and cell cycle-associated signaling proteins between lung ECs isolated from wild-type (WT) and Cav-2 knockout (KO) mice. Using three independent proliferation assays, we have determined that Cav-2 KO ECs proliferate by ca. 2-fold faster than their WT counterparts. Cell cycle analysis by flow cytometry of propidium iodide-stained cells showed a relatively higher percentage of Cav-2 KO ECs in S and G(2)/M and lower percentage in G(o)/G(1) phases of cell cycle relative to their WT counterparts. Furthermore, an over 2-fold increase in the percentage of S phase-associated Cav-2 KO relative to WT ECs was independently determined with bromodeoxyuridine incorporation assay. Mechanistically, the increase in proliferation/cell cycle progression of Cav-2 KO ECs correlated well with elevated expression levels of predominantly S phase- and G(2)/M phase-associated cyclin A and B1, respectively. Further mechanistic analysis of molecular events controlling cell cycle progression revealed increased level of hyperphosphorylated (inactive) form of G(1) to S phase transition inhibitor, the retinoblastoma protein in hyperproliferating Cav-2 KO ECs. Conversely, the expression level of the two cyclin-dependent kinase inhibitors p16(INK4) and p27(Kip1) was reduced in Cav-2 KO ECs. Finally, increased phosphorylation (activation) of proproliferative extracellular signal-regulated kinase 1/2 was observed in hyperproliferating Cav-2 KO ECs. Overall, our data suggest that Cav-2 negatively regulates lung EC proliferation and cell cycle progression.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here