z-logo
open-access-imgOpen Access
Tumor necrosis factor-α induces a biphasic change in claudin-2 expression in tubular epithelial cells: role in barrier functions
Author(s) -
Yasaman Amoozadeh,
Qinghong Dan,
Jenny Xiao,
Faiza Waheed,
Katalin Szászi
Publication year - 2015
Publication title -
american journal of physiology. cell physiology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.432
H-Index - 181
eISSN - 1522-1563
pISSN - 0363-6143
DOI - 10.1152/ajpcell.00388.2014
Subject(s) - claudin , tumor necrosis factor alpha , tight junction , gene silencing , rhoa , downregulation and upregulation , cytokine , mapk/erk pathway , microbiology and biotechnology , signal transduction , biology , chemistry , medicine , endocrinology , cancer research , immunology , biochemistry , gene
The inflammatory cytokine tumor necrosis factor-α (TNF-α) is a pathogenic factor in acute and chronic kidney disease. TNF-α is known to alter expression of epithelial tight junction (TJ) proteins; however, the underlying mechanisms and the impact of this effect on epithelial functions remain poorly defined. Here we describe a novel biphasic effect of TNF-α on TJ protein expression. In LLC-PK1 tubular cells, short-term (1-6 h) TNF-α treatment selectively elevated the expression of the channel-forming TJ protein claudin-2. In contrast, prolonged (>8 h) TNF-α treatment caused a marked downregulation in claudin-2 and an increase in claudin-1, -4, and -7. The early increase and the late decrease in claudin-2 expression involved distinct mechanisms. TNF-α slowed claudin-2 degradation through ERK, causing the early increase. This increase was also mediated by the EGF receptor and RhoA and Rho kinase. In contrast, prolonged TNF-α treatment reduced claudin-2 mRNA levels and promoter activity independent from these signaling pathways. Electric Cell-substrate Impedance Sensing measurements revealed that TNF-α also exerted a biphasic effect on transepithelial resistance (TER) with an initial decrease and a late increase. Thus there was a good temporal correlation between TNF-α-induced claudin-2 protein and TER changes. Indeed, silencing experiments showed that the late TER increase was at least in part caused by reduced claudin-2 expression. Surprisingly, however, claudin-2 silencing did not prevent the early TER drop. Taken together, the TNF-α-induced changes in claudin-2 levels might contribute to TER changes and could also play a role in newly described functions of claudin-2 such as proliferation regulation.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here