
Single-cell transcriptomic analysis identifies extensive heterogeneity in the cellular composition of mouse Achilles tendons
Author(s) -
Andrea De Micheli,
Jacob B Swanson,
Nathaniel P Disser,
Leandro Marcelo Martinez,
Nicholas R. Walker,
David J. Oliver,
Benjamin D. Cosgrove,
Christopher L. Mendias
Publication year - 2020
Publication title -
american journal of physiology. cell physiology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.432
H-Index - 181
eISSN - 1522-1563
pISSN - 0363-6143
DOI - 10.1152/ajpcell.00372.2020
Subject(s) - tendon , biology , achilles tendon , extracellular matrix , microbiology and biotechnology , transcriptome , progenitor cell , cell type , cell , stem cell , anatomy , computational biology , genetics , gene expression , gene
Tendon is a dense connective tissue that stores and transmits forces between muscles and bones. Cellular heterogeneity is increasingly recognized as an important factor in the biological basis of tissue homeostasis and disease, yet little is known about the diversity of cell types that populate tendon. To address this, we determined the heterogeneity of cell populations within mouse Achilles tendons using single-cell RNA sequencing. In assembling a transcriptomic atlas of Achilles tendons, we identified 11 distinct types of cells, including three previously undescribed populations of tendon fibroblasts. Prior studies have indicated that pericytes, which are found in the vasculature of tendons, could serve as a potential source of progenitor cells for adult tendon fibroblasts. Using trajectory inference analysis, we provide additional support for the notion that pericytes are likely to be at least one of the progenitor cell populations for the fibroblasts that compose adult tendons. We also modeled cell-cell interactions and identified previously undescribed ligand-receptor signaling interactions involved in tendon homeostasis. Our novel and interactive tendon atlas highlights previously underappreciated heterogeneity between and within tendon cell populations. The atlas also serves as a resource to further the understanding of tendon extracellular matrix assembly and maintenance and in the design of therapies for tendinopathies.