z-logo
open-access-imgOpen Access
Atmospheric ultrafine particles promote vascular calcification via the NF-κB signaling pathway
Author(s) -
Rongsong Li,
David R. Mittelstein,
Winnie Kam,
Payam Pakbin,
Yunfeng Du,
Yin Tintut,
Mohamad Navab,
Constantinos Sioutas,
Tzung K. Hsiai
Publication year - 2013
Publication title -
american journal of physiology. cell physiology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.432
H-Index - 181
eISSN - 1522-1563
pISSN - 0363-6143
DOI - 10.1152/ajpcell.00322.2012
Subject(s) - calcification , vascular smooth muscle , medicine , endocrinology , chemistry , alkaline phosphatase , oxidative stress , biochemistry , enzyme , smooth muscle
Exposure to atmospheric fine particulate matter (PM(2.5)) is a modifiable risk factor of cardiovascular disease. Ultrafine particles (UFP, diameter <0.1 μm), a subfraction of PM(2.5), promote vascular oxidative stress and inflammatory responses. Epidemiologic studies suggest that PM exposure promotes vascular calcification. Here, we assessed whether UFP exposure promotes vascular calcification via NF-κB signaling. UFP exposure at 50 μg/ml increased alkaline phosphatase (ALP) activity by 4.4 ± 0.2-fold on day 3 (n = 3, P < 0.001) and matrix calcification by 3.5 ± 1.7-fold on day 10 (n = 4, P < 0.05) in calcifying vascular cells (CVC), a subpopulation of vascular smooth muscle cells with osteoblastic potential. Treatment of CVC with conditioned media derived from UFP-treated macrophages (UFP-CM) also led to an increase in ALP activities and matrix calcification. Furthermore, both UFP and UFP-CM significantly increased NF-κB activity, and cotreatment with an NF-κB inhibitor, JSH23, attenuated both UFP- and UFP-CM-induced ALP activity and calcification. When low-density lipoprotein receptor-null mice were exposed to UFP at 359.5 μg/m(3) for 10 wk, NF-κB activation and vascular calcification were detected in the regions of aortic roots compared with control filtered air-exposed mice. These findings suggest that UFP promotes vascular calcification via activating NF-κB signaling.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here