z-logo
open-access-imgOpen Access
Modulation of KV1.3 channels by protein kinase A I in T lymphocytes is mediated by the disc large 1-tyrosine kinase Lck complex
Author(s) -
Zerrin Kuras,
Vladimir Kucher,
Scott M. Gordon,
Lisa Neumeier,
Ameet A. Chimote,
Alexandra H. Filipovich,
Laura Conforti
Publication year - 2012
Publication title -
ajp cell physiology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.432
H-Index - 181
eISSN - 1522-1563
pISSN - 0363-6143
DOI - 10.1152/ajpcell.00263.2011
Subject(s) - jurkat cells , protein kinase a , activator (genetics) , signal transduction , microbiology and biotechnology , small interfering rna , chemistry , gene isoform , gene knockdown , biology , kinase , biochemistry , t cell , receptor , transfection , apoptosis , immune system , gene , immunology
The cAMP/PKA signaling system constitutes an inhibitory pathway in T cells and, although its biochemistry has been thoroughly investigated, its possible effects on ion channels are still not fully understood. K(V)1.3 channels play an important role in T-cell activation, and their inhibition suppresses T-cell function. It has been reported that PKA modulates K(V)1.3 activity. Two PKA isoforms are expressed in human T cells: PKAI and PKAII. PKAI has been shown to inhibit T-cell activation via suppression of the tyrosine kinase Lck. The aim of this study was to determine the PKA isoform modulating K(V)1.3 and the signaling pathway underneath. 8-Bromoadenosine 3',5'-cyclic monophosphate (8-BrcAMP), a nonselective activator of PKA, inhibited K(V)1.3 currents both in primary human T and in Jurkat cells. This inhibition was prevented by the PKA blocker PKI(6-22). Selective knockdown of PKAI, but not PKAII, with siRNAs abolished the response to 8-BrcAMP. Additional studies were performed to determine the signaling pathway mediating PKAI effect on K(V)1.3. Overexpression of a constitutively active mutant of Lck reduced the response of K(V)1.3 to 8-Br-cAMP. Moreover, knockdown of the scaffolding protein disc large 1 (Dlg1), which binds K(V)1.3 to Lck, abolished PKA modulation of K(V)1.3 channels. Immunohistochemistry studies showed that PKAI, but not PKAII, colocalizes with K(V)1.3 and Dlg1 indicating a close proximity between these proteins. These results indicate that PKAI selectively regulates K(V)1.3 channels in human T lymphocytes. This effect is mediated by Lck and Dlg1. We thus propose that the K(V)1.3/Dlg1/Lck complex is part of the membrane pathway that cAMP utilizes to regulate T-cell function.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom