z-logo
open-access-imgOpen Access
With-No-Lysine Kinase 3 (WNK3) stimulates glioma invasion by regulating cell volume
Author(s) -
Brian R. Haas,
Vishnu Anand Cuddapah,
Stacey Watkins,
Katie Jo Rohn,
Tiffany E Dy,
Harald Sontheimer
Publication year - 2011
Publication title -
american journal of physiology. cell physiology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.432
H-Index - 181
eISSN - 1522-1563
pISSN - 0363-6143
DOI - 10.1152/ajpcell.00203.2011
Subject(s) - bumetanide , glioma , cotransporter , gene knockdown , kinase , microbiology and biotechnology , osmolyte , protein kinase a , biology , cell , symporter , chemistry , cell culture , cancer research , transporter , biochemistry , sodium , genetics , organic chemistry , gene
Among the most prevalent and deadly primary brain tumors, high-grade gliomas evade complete surgical resection by diffuse invasion into surrounding brain parenchyma. Navigating through tight extracellular spaces requires invading glioma cells to alter their shape and volume. Cell volume changes are achieved through transmembrane transport of osmolytes along with obligated water. The sodium-potassium-chloride cotransporter isoform-1 (NKCC1) plays a pivotal role in this process, and previous work has demonstrated that NKCC1 inhibition compromises glioma invasion in vitro and in vivo by interfering with the required cell volume changes. In this study, we show that NKCC1 activity in gliomas requires the With-No-Lysine Kinase-3 (WNK3) kinase. Western blots of patient biopsies and patient-derived cell lines shows prominent expression of Ste-20-related, proline-alanine-rich kinase (SPAK), oxidative stress response kinase (OSR1), and WNK family members 1, 3, and 4. Of these, only WNK3 colocalized and coimmunoprecipitated with NKCC1 upon changes in cell volume. Stable knockdown of WNK3 using specific short hairpin RNA constructs completely abolished NKCC1 activity, as measured by the loss of bumetanide-sensitive cell volume regulation. Consequently, WNK3 knockdown cells showed a reduced ability to invade across Transwell barriers and lacked bumetanide-sensitive migration. This data indicates that WNK3 is an essential regulator of NKCC1 and that WNK3 activates NKCC1-mediated ion transport necessary for cell volume changes associated with cell invasion.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here