z-logo
open-access-imgOpen Access
Bone morphogenetic protein 4 enhances canonical transient receptor potential expression, store-operated Ca2+entry, and basal [Ca2+]iin rat distal pulmonary arterial smooth muscle cells
Author(s) -
Wenju Lu,
Pixin Ran,
Dandan Zhang,
Ning Lai,
Nanshan Zhong,
Jian Wang
Publication year - 2010
Publication title -
american journal of physiology. cell physiology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.432
H-Index - 181
eISSN - 1522-1563
pISSN - 0363-6143
DOI - 10.1152/ajpcell.00040.2010
Subject(s) - trpc , trpc1 , transient receptor potential channel , bone morphogenetic protein 4 , gene knockdown , downregulation and upregulation , orai1 , trpc5 , microbiology and biotechnology , bone morphogenetic protein , endocrinology , medicine , calcium in biology , chemistry , biology , calcium , receptor , voltage dependent calcium channel , intracellular , biochemistry , apoptosis , gene
Recent advances have identified an important role of bone morphogenetic protein 4 (BMP4) in pulmonary vascular remodeling, yet the underlying mechanisms remain largely unexplored. We have previously found that Ca(2+) influx through store-operated calcium channels (SOCC), which are mainly thought to be composed of canonical transient receptor potential (TRPC) proteins, likely contribute to the pathogenic development of chronic hypoxic pulmonary hypertension. In this study, we investigated the effect of BMP4 on expression of TRPC and store-operated Ca(2+) entry (SOCE) in pulmonary arterial smooth muscle cells (PASMCs). Real-time quantitative PCR and Western blotting revealed that treatment with BMP4 (50 ng/ml, 60 h) increased TRPC1, TRPC4, and TRPC6 mRNA and protein expression in growth-arrested rat distal PASMCs. Moreover, in comparison to vehicle control, cells treated with BMP4 also exhibited enhanced SOCE, and elevated basal intracellular calcium concentration ([Ca(2+)](i)) as determined by fluorescent microscopy using the Ca(2+) indicator Fura-2 AM. Perfusing cells with Ca(2+)-free Krebs-Ringer bicarbonate solution (KRBS) or KRBS containing SOCC antagonists SKF-96365 or NiCl(2) attenuated the increases in basal [Ca(2+)](i) caused by BMP4. Specific knockdown of BMP4 by small interference RNA significantly decreased the mRNA and protein expression of TRPC1, TRPC4, and TRPC6 and reduced SOCE and basal [Ca(2+)](i) in serum-stimulated PASMCs. We conclude that BMP4 regulates calcium signaling in PASMCs likely via upregulation of TRPC expression, leading to enhanced SOCE and basal [Ca(2+)](i) in PASMCs, and by this mechanism contributes to pulmonary vascular remodeling during pulmonary arterial hypertension.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here