z-logo
open-access-imgOpen Access
Corrosion in Advanced Nuclear Reactors
Author(s) -
Gary S. Was,
Todd R. Allen
Publication year - 2021
Publication title -
the electrochemical society interface
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.568
H-Index - 46
eISSN - 1944-8783
pISSN - 1064-8208
DOI - 10.1149/2.f10212if
Subject(s) - corrosion , intergranular corrosion , crevice corrosion , coolant , galvanic corrosion , galvanic cell , materials science , metallurgy , nuclear power plant , nuclear power , nuclear engineering , engineering , mechanical engineering , nuclear physics , physics
Commercial nuclear power plants in the United States are light water reactors (LWRs) that use water as a coolant, with temperatures ranging between 280°C and 320°C. Water purity is tightly controlled; nevertheless, the high temperatures expose components in the water circuit to degradation by corrosion by many different types of environmental attack. Uniform corrosion occurs across the entire surface of a material and is prevalent in engineering systems to some extent. Site-specific corrosion processes, such as crevice corrosion, intergranular attack, or galvanic corrosion, are common in complex engineering systems that consist of multiple materials joined by welds or other solid state joining processes. Even within a single component, if second phase strengthening is used or if surface defects are present, localized corrosion can occur.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom