Phase-Field Modeling and Simulation of Gas Bubble Coalescence and Detachment in a Gas-Liquid Two-Phase Electrochemical System
Author(s) -
Zongliang Zhang,
Wei Liu,
Michael L. Free
Publication year - 2019
Publication title -
journal of the electrochemical society
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.258
H-Index - 271
eISSN - 1945-7111
pISSN - 0013-4651
DOI - 10.1149/2.0322001jes
Subject(s) - coalescence (physics) , bubble , electrode , electrolyte , electrochemistry , liquid bubble , materials science , mechanics , phase (matter) , gas bubble , chemical physics , chemistry , physics , organic chemistry , astrobiology
Many electrochemical processes involve gas evolution and bubble generation on the electrodes. Understanding the behavior of bubbles on the electrode surface and in the electrolyte is crucial to the design and optimization of the electrochemical process. Gas bubbles tend to coalesce and detach from the electrode surface once they are formed and as they grow, but these processes have not been investigated and understood well. The phase-field modeling method is excellent at tracking the interface between different phases, and the simulation results can give a precise prediction of the interaction between phases. In this research, taking advantage of the phase-field method, a gas-liquid two-phase model has been constructed to investigate the bubble coalescence and detachment in the electrochemical system. Sophisticated, tiny gas bubble coalescence on and off electrode and the detachment of bubbles from the electrode surface were predicted by the model. The results are helpful for the understanding of these transient processes in the electrochemically generated bubble-liquid system.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom