z-logo
open-access-imgOpen Access
Low Error Estimation of Half-Cell Thermodynamic Parameters from Whole-Cell Li-Ion Battery Experiments: Physics-Based Model Formulation, Experimental Demonstration, and an Open Software Tool
Author(s) -
Victor Waiman Hu,
Daniel T. Schwartz
Publication year - 2022
Publication title -
journal of the electrochemical society
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.258
H-Index - 271
eISSN - 1945-7111
pISSN - 0013-4651
DOI - 10.1149/1945-7111/ac5a1a
Subject(s) - voltage , anode , battery (electricity) , open circuit voltage , simulation , algorithm , computer science , biological system , chemistry , physics , electrical engineering , engineering , thermodynamics , electrode , power (physics) , biology
Low C-rate charge and discharge experiments, plus complementary differential voltage or differential capacity analysis, are among the most common battery characterization methods. Here, we adapt the multi-species, multi-reaction (MSMR) half-cell thermodynamic model to low C-rate cycling of whole-cell Li-ion batteries. MSMR models for the anode and cathode are coupled through whole-cell charge balances and cell-cycling voltage constraint equations, forming the basis for model-based estimation of MSMR half-cell parameters from whole-cell experimental data. Emergent properties of the whole-cell, like slippage of the anode and cathode lithiation windows, are also computed as cells cycle and degrade. A sequential least-square optimization scheme is used for parameter estimation from low-C cycling data of Samsung 18650 NMC∣C cells. Low-error fits of the open-circuit cell voltage (e.g., under 5 mV mean absolute error for charge or discharge curves) and differential voltage curves for fresh and aged cells are achieved. We explore the features (and limitations) of using literature reference values for the MSMR half-cell thermodynamic parameters (reducing our whole-cell formulation to a 1-degree-of-freedom fit) and demonstrate the benefits of expanding the degrees of freedom by letting the MSMR parameters be tailored to the cell under test, within a constrained neighborhood of the half-cell reference values. Bootstrap analysis is performed on each dataset to show the robustness of our fitting to experimental noise and data sampling over the course of 600 cell cycles. The results show which specific MSMR insertion reactions are most responsible for capacity loss in each half-cell and the collective interactions that lead to whole-cell slippage and changes in useable capacity. Open-source software is made available to easily extend this model-based analysis to other labs and battery chemistries.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here