z-logo
open-access-imgOpen Access
Cyclic Voltammetry as a Probe of Selective Ion Transport within Layered, Electrode-Supported Ion-Exchange Membrane Materials
Author(s) -
Jiahe Xu,
Johna Leddy,
Carol Korzeniewski
Publication year - 2022
Publication title -
journal of the electrochemical society
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.258
H-Index - 271
eISSN - 1945-7111
pISSN - 0013-4651
DOI - 10.1149/1945-7111/ac51fd
Subject(s) - nafion , cyclic voltammetry , ionomer , chemistry , counterion , membrane , inorganic chemistry , ion exchange , electrode , overlayer , redox , analytical chemistry (journal) , ion , polymer , electrochemistry , organic chemistry , biochemistry , copolymer
Cyclic voltammetry was applied to investigate the permselective properties of electrode-supported ion-exchange polymer films intended for use in future molecular-scale spectroscopic studies of bipolar membranes. The ability of thin ionomer film assemblies to exclude mobile ions charged similarly to the polymer (co-ions) and accumulate ions charged opposite to the polymer (counterions) was scrutinized through use of the diffusible redox probe molecules [Ru(NH 3 ) 6 ] 3+ and [IrCl 6 ] 2− . With the anion exchange membrane (AEM) phase supported on a carbon disk electrode, bipolar junctions formed by addition of a cation exchange membrane (CEM) overlayer demonstrated high selectivity toward redox ion extraction and exclusion. For junctions formed using a Fumion ® AEM phase and a Nafion ® overlayer, [IrCl 6 ] 2− ions exchanged into Fumion ® prior to Nafion ® overcoating remained entrapped and the Fumion ® excluded [Ru(NH 3 ) 6 ] 3+ ions for durability testing periods of more than 20 h under conditions of interest for eventual in situ spectral measurements. Experiments with the Sustainion ® anion exchange ionomer uncovered evidence for [IrCl 6 ] 2− ion coordination to pendant imidazolium groups on the polymer. A cyclic voltammetric method for estimation of the effective diffusion coefficient and equilibrium extraction constant for redox active probe ions within inert, uniform density electrode-supported thin films was applied to examine charge transport mechanisms.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here